Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 201: 114367, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876360

RESUMO

Despite the great potential of starving therapy caused by nanoreactor based on glucose oxidase (GOX) in tumor therapy, efficiency and uncontrolled reaction rates in vivo lead to inevitable toxicity to normal tissues, which seriously hindering their clinical conversion. Herein, a cascade nanoreactor (GOX/Mn/MPDA) was constructed by coating mesoporous polydopamine nanoparticles (MPDA) with MnO2 shell and then depositing GOX into honeycomb-shaped manganese oxide nanostructures to achieve a combination of ferroptosis, photothermal therapy and starving therapy. Upon uptake of nanodrugs to cancer cells, the MnO2 shell would deplete glutathione (GSH) and produce Mn2+, while a large amount of H2O2 generated from the catalytic oxidation of glucose by GOX would accelerate the Fenton-like reaction mediated by Mn2+, producing high toxic •OH. More importantly, the cascade reaction between GOX and MnO2 would be further strengthened by localized hyperthermia caused by irradiated by near-infrared laser (NIR), inducing significant anti-tumor effects in vitro and in vivo. Regarding the effectiveness of tumor treatment in vivo, the tumor inhibition rate achieved an impressive 64.33%. This study provided a new strategy for anti-tumor therapeutic by designing a photothermal-enhanced cascade catalytic nanoreactor.


Assuntos
Ferroptose , Glucose Oxidase , Indóis , Compostos de Manganês , Nanopartículas , Óxidos , Terapia Fototérmica , Polímeros , Terapia Fototérmica/métodos , Compostos de Manganês/química , Animais , Humanos , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Indóis/química , Polímeros/química , Glucose Oxidase/metabolismo , Glucose Oxidase/administração & dosagem , Nanopartículas/química , Camundongos , Óxidos/química , Linhagem Celular Tumoral , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos BALB C , Terapia Combinada/métodos , Feminino , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Camundongos Nus
2.
Int J Pharm ; 657: 124160, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663642

RESUMO

Addressing the pervasive issue of bacteria and biofilm infections is crucial in the development of advanced antifouling wound dressings. In this study, a novel wound healing treatment using sulfobetaine (SBMA) decorated electrospun fibrous membrane based on polycaprolactone (PCL)/nitric oxide (NO) donors was developed. The fabrication involved a dual strategy, first integrating NO donors into mesoporous polydopamine (MPDA) and complexed with PCL/PEI to electrospin nanofibers. The fibrous membrane exhibited a potent antibacterial response upon irradiation at 808 nm, owing to a combination of NO and photothermal effect that effectively targets bacteria and disrupts biofilms. Surface functionalization of the membrane with PEI allowed for the attachment of SBMA via Michael addition, fabricating a zwitterionic surface, which significantly hinders protein adsorption and reduces biofilm formation on the wound dressing. In vitro and in vivo assessments confirmed the rapid bactericidal capabilities and its efficacy in biofilm eradication. Combining photothermal activity, targeted NO release and antifouling surface, this multifaceted wound dressing addresses key challenges in bacterial infection management and biofilm eradication, promoting efficient wound healing.


Assuntos
Antibacterianos , Bandagens , Betaína , Biofilmes , Indóis , Nanofibras , Poliésteres , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Animais , Cicatrização/efeitos dos fármacos , Poliésteres/química , Indóis/química , Indóis/farmacologia , Betaína/química , Betaína/farmacologia , Betaína/análogos & derivados , Nanofibras/química , Polímeros/química , Óxido Nítrico/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/química , Camundongos , Propriedades de Superfície , Escherichia coli/efeitos dos fármacos , Polietilenoimina/química
3.
Eur J Pharm Biopharm ; 190: 284-293, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532638

RESUMO

Artesunate (ART) has potent anticancer activity but it suffers from poor stability and low bioavailability in vivo due to the special endoperoxide moiety in the molecules. In this work, we fabricated programmable enzyme/reactive oxygen species (ROS) responsive ART complex carriers with size and charge adaptive regulation in order to improve stability and overcome biochemical hurdles of solid tumor. The complex carries (ART/AA-PAMAM@HA) were created by electrostatic interaction between dendrimer-ART/arachidonic acid (AA) (ART/AA-PAMAM) and hyaluronic acid (HA), which can proactively penetrate deeply into tumors and selective drug release. Specifically, ART induced Fenton reaction and produced a mass of ROS and lipid peroxides (LPO), leading to the depressing of GSH level and glutathione peroxidase 4 (GPX4) activity. Meanwhile, exogenous AA further promoted the accumulation of LPO by cascade regulating ferroptosis pathway. In the anti-tumor efficacy in vivo, the tumor inhibition ratio was achieved to 46.92%. This work shows a new anti-tumor strategy triggering ferroptosis via regulating redox homeostasis.


Assuntos
Ferroptose , Neoplasias , Humanos , Artesunato/farmacologia , Espécies Reativas de Oxigênio , Disponibilidade Biológica , Ácido Hialurônico , Peróxidos Lipídicos
4.
Biomater Adv ; 151: 213451, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150081

RESUMO

Indocyanine green (ICG) has been employed in medical diagnostics due to its superior photophysical characteristics. However, these advantages are offset by its quick body clearance and inferior photo-stability. In this work, programmable prodrug carriers for chemotherapy/PDT/PTT against nasopharyngeal carcinoma (NPC) were created in order to increase photo-stability and get around biochemical hurdles. The programmable prodrug carriers (PEG-PLA@DIT-PAMAM) that proactively penetrated deeply into NPC tumors and produced the deep phototherapy and selective drug release under laser irradiation was created by dendrimer-DOX/ICG/TPP (DIT-PAMAM) and PEGylated poly (α-lipoic acid) (PLA) copolymer. Long circulation times and minimal toxicity to mammalian cells are two benefits of PEG-coated carriers. The overexpressed GSH on the tumor cell or vascular endothelial cell of the NPC disintegrated the PEG-g-PLA chains and released the DIT-PAMAM nanoparticles after the carriers had reached the NPC tumor periphery. Small, positively charged DIT-PAMAM nanoparticles may penetrate tumors effectively and remain inside tumor for an extended period of time. In addition, the induced ROS cleaved the thioketal linkers for both DOX and nanoparticles and product hyperthermia (PTT) to kill cancer cells under laser irradiation, facilitating faster diffusion of nanoparticles and more effective tumor penetration with a programmable publication of DOX. The programmable prodrug carries showed high photo-stability high photo-stability, which enabled very effective PDT, PTT, and tumor-specific DOX release. With the goal of combining the effects of chemotherapy, PDT, and PTT against NPC, this research showed the great efficacy of programmable prodrug carriers.


Assuntos
Hipertermia Induzida , Neoplasias Nasofaríngeas , Pró-Fármacos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Poliésteres , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...