Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Nat Sci Sleep ; 16: 769-786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894976

RESUMO

Purpose: Sleep structure is crucial in sleep research, characterized by its dynamic nature and temporal progression. Traditional 30-second epochs falter in capturing the intricate subtleties of various micro-sleep states. This paper introduces an innovative artificial neural network model to generate continuous sleep depth value (SDV), utilizing a novel multi-feature fusion approach with EEG data, seamlessly integrating temporal consistency. Methods: The study involved 50 normal and 100 obstructive sleep apnea-hypopnea syndrome (OSAHS) participants. After segmenting the sleep data into 3-second intervals, a diverse array of 38 feature values were meticulously extracted, including power, spectrum entropy, frequency band duration and so on. The ensemble random forest model calculated the timing fitness value for all the features, from which the top 7 time-correlated features were selected to create detailed sleep sample values ranging from 0 to 1. Subsequently, an artificial neural network (ANN) model was trained to delineate sleep continuity details, unravel concealed patterns, and far surpassed the traditional 5-stage categorization (W, N1, N2, N3, and REM). Results: The SDV changes from wakeful stage (mean 0.7021, standard deviation 0.2702) to stage N3 (mean 0.0396, standard deviation 0.0969). During the arousal epochs, the SDV increases from the range (0.1 to 0.3) to the range around 0.7, and decreases below 0.3. When in the deep sleep (≤0.1), the probability of arousal of normal individuals is less than 10%, while the average arousal probability of OSA patients is close to 30%. Conclusion: A sleep continuity model is proposed based on multi-feature fusion, which generates SDV ranging from 0 to 1 (representing deep sleep to wakefulness). It can capture the nuances of the traditional five stages and subtle differences in microstates of sleep, considered as a complement or even an alternative to traditional sleep analysis.

2.
Int J Biol Macromol ; 273(Pt 1): 133032, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38862053

RESUMO

Collagen's unique properties promise hemostatic potential, but its sponge form's stability and mechanics need improvement. In this study, we developed a series of homeostatic sponges by co-assembling collagen and curdlan at different ratios into hydrogels, followed by freeze-drying treatment. The incorporation of curdlan into collagen sponges has been found to significantly enhance the sponge's properties, including increased porosity, elevated water uptake, improved elasticity, and enhanced resistance to degradation. In vitro cytotoxicity and hemolysis assays have demonstrated the biocompatibility and nontoxicity of composite sponges. In mouse liver perforation and incision models, the composite sponges achieved rapid coagulation within 67 s and 75 s, respectively, outperforming gauze and gelatin sponge in reducing blood loss. Furthermore, composite sponges demonstrated superior wound healing potential in mice full-thickness skin defects model, with accelerated healing rates observed at days 3, 7, and 14 compared to the control group. Overall, collagen/curdlan composite sponge show promise for hemostasis and wound healing applications.

3.
Sci Data ; 11(1): 580, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834576

RESUMO

With the rapid proliferation of climate policies in both number and scope, there is an increasing demand for a global-level dataset that provides multi-indicator information on policy elements and their implementation contexts. To address this need, we developed the Global Climate Change Mitigation Policy Dataset (GCCMPD) using a semisupervised hybrid machine learning approach, drawing upon policy information from global, regional, and sector-specific sources. Differing from existing climate policy datasets, the GCCMPD covers a large range of policies, amounting to 73,625 policies of 216 entities. Through the integration of expert knowledge-based dictionary mapping, probability statistics methods, and advanced natural language processing technology, the GCCMPD offers detailed classification of multiple indicators and consistent information on sectoral policy instruments. This includes insights into objectives, target sectors, instruments, legal compulsion, administrative entities, etc. By aligning with the sector classification of the Intergovernmental Panel on Climate Change (IPCC) emission datasets, the GCCMPD serves to help policy-makers, researchers, and social organizations gain a deeper understanding of the similarities and distinctions among climate activities across countries, sectors, and entities.

4.
ACS Appl Bio Mater ; 7(5): 3295-3305, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38701399

RESUMO

Physicochemical properties of nanoparticles, such as particle size, surface charge, and particle shape, have a significant impact on cell activities. However, the effects of surface functionalization of nanoparticles with small chemical groups on stem cell behavior and function remain understudied. Herein, we incorporated different chemical functional groups (amino, DETA, hydroxyl, phosphate, and sulfonate with charges of +9.5, + 21.7, -14.1, -25.6, and -37.7, respectively) to the surface of inorganic silica nanoparticles. To trace their effects on mesenchymal stem cells (MSCs) of rat bone marrow, these functionalized silica nanoparticles were used to encapsulate Rhodamine B fluorophore dye. We found that surface functionalization with positively charged and short-chain chemical groups facilitates cell internalization and retention of nanoparticles in MSCs. The endocytic pathway differed among functionalized nanoparticles when tested with ion-channel inhibitors. Negatively charged nanoparticles mainly use lysosomal exocytosis to exit cells, while positively charged nanoparticles can undergo endosomal escape to avoid scavenging. The cytotoxic profiles of these functionalized silica nanoparticles are still within acceptable limits and tolerable. They exerted subtle effects on the actin cytoskeleton and migration ability. Last, phosphate-functionalized nanoparticles upregulate osteogenesis-related genes and induce osteoblast-like morphology, implying that it can direct MSCs lineage specification for bone tissue engineering. Our study provides insights into the rational design of biomaterials for effective drug delivery and regenerative medicine.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Células-Tronco Mesenquimais , Nanopartículas , Tamanho da Partícula , Dióxido de Silício , Propriedades de Superfície , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Nanopartículas/química , Animais , Ratos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Osteogênese/efeitos dos fármacos
5.
J Econ Entomol ; 117(3): 1141-1151, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38706118

RESUMO

Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a serious pathogen causing huge economic losses to sericulture. There is growing evidence that the gut microbiota of silkworms plays a critical role in shaping host responses and interactions with viral infection. However, little is known about the differences in the composition and diversity of intestinal microflora, especially with respect to silkworm strain differences and BmNPV infection-induced changes. Here, we aim to explore the differences between BmNPV-resistant strain A35 and susceptible strain P50 silkworm and the impact of BmNPV infection on intestinal microflora in different strains. The 16S rDNA sequencing analysis revealed that the fecal microbial populations were distinct between A35 and P50 and were significantly changed post BmNPV infection in both strains. Further analysis showed that the BmNPV-resistant strain silkworm possessed higher bacterial diversity than the susceptible strain, and BmNPV infection reduced the diversity of intestinal flora assessed by feces in both silkworm strains. In response to BmNPV infection, the abundance of Muribaculaceae increased in P50 and decreased in A35, while the abundance of Enterobacteriaceae decreased in P50 and increased in A35. These results indicated that BmNPV infection had various effects on the abundance of fecal microflora in different silkworm strains. Our findings not only broadened the understanding of host-pathogen interactions but also provided theoretical help for the breeding of resistant strains and healthy rearing of silkworms based on symbiotic bacteria.


Assuntos
Bombyx , Microbioma Gastrointestinal , Nucleopoliedrovírus , Animais , Bombyx/virologia , Bombyx/microbiologia , Bombyx/crescimento & desenvolvimento , Nucleopoliedrovírus/fisiologia , Larva/virologia , Larva/microbiologia , Larva/crescimento & desenvolvimento , Fezes/microbiologia , Fezes/virologia
6.
ACS Appl Mater Interfaces ; 16(21): 27576-27586, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38722948

RESUMO

Near-infrared (NIR) organic photodetectors (OPDs) are pivotal in numerous technological applications due to their excellent responsivity within the NIR region. Polyethylenimine ethoxylated (PEIE) has conventionally been employed as an electron transport layer (hole-blocking layer) to suppress dark current (JD) and enhance charge transport. However, the limitations of PEIE in chemical stability, processing conditions, environmental impact, and absorption range have spurred the development of alternative materials. In this study, we introduced a novel solution: a hybrid of sol-gel zinc oxide (ZnO) and N,N'-bis(N,N-dimethylpropan-1-amine oxide)perylene-3,4,9,10-tetracarboxylic diimide (PDINO) as the electron transport layer for NIR-OPDs. Our fabricated OPD exhibited significantly improved responsivity, reduced internal traps, and enhanced charge transfer efficiency. The detectivity, spanning from 400 to 1100 nm, surpassed ∼5 × 1012 Jones, reaching ∼1.1 × 1012 Jones at 1000 nm, accompanied by an increased responsivity of 0.47 A/W. Also, the unpackaged OPD remarkedly demonstrated stable JD and external quantum efficiency (EQE) over 1000 h under dark storage conditions. This innovative approach not only addresses the drawbacks of conventional PEIE-based OPDs but also offers promising avenues for the development of high-performance OPDs in the future.

7.
Eur J Surg Oncol ; 50(6): 108339, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640604

RESUMO

BACKGROUND: The optimal surgical approach for Bismuth II hilar cholangiocarcinoma (HCCA) remains controversial. This study compared perioperative and oncological outcomes between minor and major hepatectomy. MATERIALS AND METHODS: One hundred and seventeen patients with Bismuth II HCCA who underwent hepatectomy and cholangiojejunostomy between January 2018 and December 2022 were retrospectively investigated. Propensity score matching created a cohort of 62 patients who underwent minor (n = 31) or major (n = 31) hepatectomy. Perioperative outcomes, complications, quality of life, and survival outcomes were compared between the groups. Continuous data are expressed as the mean ± standard deviation, categorical variables are presented as n (%). RESULTS: Minor hepatectomy had a significantly shorter operation time (245.42 ± 54.31 vs. 282.16 ± 66.65 min; P = 0.023), less intraoperative blood loss (194.19 ± 149.17 vs. 315.81 ± 256.80 mL; P = 0.022), a lower transfusion rate (4 vs. 11 patients; P = 0.038), more rapid bowel recovery (17.77 ± 10.00 vs. 24.94 ± 9.82 h; P = 0.005), and a lower incidence of liver failure (1 vs. 6 patients; P = 0.045). There were no significant between-group differences in wound infection, bile leak, bleeding, pulmonary infection, intra-abdominal fluid collection, and complication rates. Postoperative laboratory values, length of hospital stay, quality of life scores, 3-year overall survival (25.8 % vs. 22.6 %; P = 0.648), and 3-year disease-free survival (12.9 % vs. 16.1 %; P = 0.989) were comparable between the groups. CONCLUSION: In this propensity score-matched analysis, overall survival and disease-free survival were comparable between minor and major hepatectomy in selected patients with Bismuth II HCCA. Minor hepatectomy was associated with a shorter operation time, less intraoperative blood loss, less need for transfusion, more rapid bowel recovery, and a lower incidence of liver failure. Besides, this findings need confirmation in a large-scale, multicenter, prospective randomized controlled trial with longer-term follow-up.


Assuntos
Neoplasias dos Ductos Biliares , Hepatectomia , Tumor de Klatskin , Duração da Cirurgia , Pontuação de Propensão , Humanos , Hepatectomia/métodos , Masculino , Feminino , Neoplasias dos Ductos Biliares/cirurgia , Pessoa de Meia-Idade , Estudos Retrospectivos , Tumor de Klatskin/cirurgia , Idoso , Qualidade de Vida , Perda Sanguínea Cirúrgica/estatística & dados numéricos , Complicações Pós-Operatórias/epidemiologia , Tempo de Internação/estatística & dados numéricos , Taxa de Sobrevida , Jejunostomia/métodos
8.
Medicine (Baltimore) ; 103(15): e37728, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608069

RESUMO

Stomach adenocarcinoma (STAD) is one of the subtype of gastric cancer with high invasiveness, extreme heterogeneity, high morbidity, and high mortality. The degradome is the most abundant class of cellular enzymes that play an essential role in regulating cellular activity and carcinogenesis. An integrative machine learning procedure including 10 methods was performed to develop a prognostic degradome-based prognostic signature (DPS) in TCGA, GSE15459, GSE26253, and GSE62254 datasets. Investigations of the DPS concerning immune infiltration, immunotherapy benefits, and drug priority were orchestrated. The DPS developed by Enet [alpha = 0.3] method was regarded as the optimal prognostic model. The DPS had a stable and powerful performance in predicting the clinical outcome of STAD and served as an independent risk factor in training and testing cohorts. The C-index of DPS was higher than that of age, sex, and clinical stage. STAD patients with low DPS scores had a higher abundance of B cells, CD8+ T cells, higher cytolytic scores, and T cell co-stimulation scores. Moreover, low DPS score indicated a lower tumor immune dysfunction and exclusion score, lower T cell dysfunction and exclusion score, higher PD1&CTLA4 immunophenoscore, and higher tumor mutation burden score in STAD, demonstrating a better immunotherapy response. STAD patients with a high DPS score had a lower IC50 value of common chemotherapy and targeted therapy regimens (Cisplatin, Docetaxel, Gefitinib, etc). Our study developed an optimal DPS for STAD. The DPS could predict the prognosis, risk stratification and guide treatment for STAD patients.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/terapia , Prognóstico , Imunoterapia , Adenocarcinoma/terapia
9.
Med ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38670112

RESUMO

BACKGROUND: The gut mycobiome is closely linked to health and disease; however, its role in the progression of type 2 diabetes mellitus (T2DM) remains obscure. Here, a multi-omics approach was employed to explore the role of intestinal fungi in the deterioration of glycemic control. METHODS: 350 participants without hypoglycemic therapies were invited for a standard oral glucose tolerance test to determine their status of glycemic control. The gut mycobiome was identified through internal transcribed spacer sequencing, host genetics were determined by genotyping array, and plasma metabolites were measured with untargeted liquid chromatography mass spectrometry. FINDINGS: The richness of fungi was higher, whereas its dissimilarity was markedly lower, in participants with T2DM. Moreover, the diversity and composition of fungi were closely associated with insulin sensitivity and pancreatic ß-cell functions. With the exacerbation of glycemic control, the co-occurrence network among fungus taxa became increasingly complex, and the complexity of the interaction network was inversely associated with insulin sensitivity. Mendelian randomization analysis further demonstrated that the Archaeorhizomycetes class, Fusarium genus, and Neoascochyta genus were causally linked to impaired glucose metabolism. Furthermore, integrative analysis with metabolomics showed that increased 4-hydroxy-2-oxoglutaric acid, ketoleucine, lysophosphatidylcholine (20:3/0:0), and N-lactoyl-phenylalanine, but decreased lysophosphatidylcholine (O-18:2), functioned as key molecules linking the adverse effect of Fusarium genus on insulin sensitivity. CONCLUSIONS: Our study uncovers a strong association between disturbance in gut fungi and the progression of T2DM and highlights the potential of targeting the gut mycobiome for the management of T2DM. FUNDINGS: This study was supported by MOST and NSFC of China.

10.
Insect Biochem Mol Biol ; 169: 104125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616030

RESUMO

Voltage-dependent anion channel 2 (VDAC2) is an important channel protein that plays a crucial role in the host response to viral infection. The receptor for activated C kinase 1 (RACK1) is also a key host factor involved in viral replication. Our previous research revealed that Bombyx mori VDAC2 (BmVDAC2) and B. mori RACK1 (BmRACK1) may interact with Bombyx mori nucleopolyhedrovirus (BmNPV), though the specific molecular mechanism remains unclear. In this study, the interaction between BmVDAC2 and BmRACK1 in the mitochondria was determined by various methods. We found that BmNPV p35 interacts directly with BmVDAC2 rather than BmRACK1. BmNPV infection significantly reduced the expression of BmVDAC2, and activated the mitochondrial apoptosis pathway. Overexpression of BmVDAC2 in BmN cells inhibited BmNPV-induced cytochrome c (cyto c) release, decrease in mitochondrial membrane potential as well as apoptosis. Additionally, the inhibition of cyto c release by BmVDAC2 requires the involvement of BmRACK1 and protein kinase C. Interestingly, overexpression of p35 inhibited cyto c release during mitochondrial apoptosis in a RACK1 and VDAC2-dependent manner. Even the mutant p35, which loses Caspase inhibitory activity, could still bind to VDAC2 and inhibit cyto c release. In summary, our results indicated that BmNPV p35 interacts with the VDAC2-RACK1 complex to regulate apoptosis by inhibiting cyto c release. These findings confirm the interaction between BmVDAC2 and BmRACK1, the interaction between p35 and the VDAC2-RACK1 complex, and a novel target that BmNPV p35 regulates apoptosis in Bombyx mori via interaction with the BmVDAC2-BmRACK1 complex. The result provide an initial exploration of the function of this interaction in the BmNPV-induced mitochondrial apoptosis pathway.


Assuntos
Apoptose , Bombyx , Proteínas de Insetos , Nucleopoliedrovírus , Receptores de Quinase C Ativada , Animais , Bombyx/virologia , Bombyx/metabolismo , Bombyx/genética , Nucleopoliedrovírus/fisiologia , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/genética , Mitocôndrias/metabolismo
11.
ACS Appl Mater Interfaces ; 16(13): 16893-16902, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525842

RESUMO

Hygroscopic composites based on hygroscopic salts and hydrogels are promising for atmospheric water harvesting (AWH), but their relatively low water production and possible salt leakage hinder real applications. Here, we report highly hygroscopic and leakage-free composites from loading LiCl into emulsion-templated sodium alginate and poly(vinyl alcohol) hydrogels with macroporous structures and interpenetrating polymer networks. The resulting composites exhibited an enhanced moisture uptake (up to 3.4 g g-1) and leakage-free behavior even at an extremely high relative humidity (RH) of 90%. Moreover, the composites showed accelerated adsorption, with high adsorption (0.803 g g-1 water at 25 °C and 90% RH within 1 h) and desorption due to the emulsion-templated, highly interconnected macropores. The hygroscopic composites obtained 1.12 g g-1 water per adsorption-desorption collection cycle and showed high reusability, without obvious deterioration in adsorption, desorption, and collection after 10 cycles. With the presence of carbon nanotubes, solar-driven AWH could be realized, without the requirement of additional energy. The highly hygroscopic and leakage-free composites with enhanced and accelerated adsorption and desorption are excellent candidates for efficient AWH.

12.
Cell Host Microbe ; 32(3): 366-381.e9, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412863

RESUMO

Hyperuricemia induces inflammatory arthritis and accelerates the progression of renal and cardiovascular diseases. Gut microbiota has been linked to the development of hyperuricemia through unclear mechanisms. Here, we show that the abundance and centrality of Alistipes indistinctus are depleted in subjects with hyperuricemia. Integrative metagenomic and metabolomic analysis identified hippuric acid as the key microbial effector that mediates the uric-acid-lowering effect of A. indistinctus. Mechanistically, A. indistinctus-derived hippuric acid enhances the binding of peroxisome-proliferator-activated receptor γ (PPARγ) to the promoter of ATP-binding cassette subfamily G member 2 (ABCG2), which in turn boosts intestinal urate excretion. To facilitate this enhanced excretion, hippuric acid also promotes ABCG2 localization to the brush border membranes in a PDZ-domain-containing 1 (PDZK1)-dependent manner. These findings indicate that A. indistinctus and hippuric acid promote intestinal urate excretion and offer insights into microbiota-host crosstalk in the maintenance of uric acid homeostasis.


Assuntos
Bacteroidetes , Hipuratos , Hiperuricemia , Humanos , Hiperuricemia/metabolismo , Ácido Úrico/metabolismo , Intestinos , Transportadores de Cassetes de Ligação de ATP/metabolismo
13.
Neurospine ; 21(1): 231-243, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317554

RESUMO

OBJECTIVE: To compare the clinical outcomes and biomechanical characteristics of 1-, 2-, and 3-level pedicle subtraction osteotomy (PSO), and establish selection criteria based on preoperative radiographic parameters. METHODS: Patients undergone PSO to treat ankylosing spondylitis from February 2009 to May 2019 in Sun Yat-sen Memorial Hospital of Sun Yat-sen University were enrolled. According to the quantity of osteotomy performed, the participants were divided into group A (1-level PSO, n = 24), group B (2-level PSO, n = 19), and group C (3-level PSO, n = 11). Clinical outcomes were assessed before surgery and at the final follow-up. Comparisons of the radiographic parameters and quality-of-life indicators were performed among and within these groups, and the selection criteria were established by regression. Finite element analysis was conducted to compare the biomechanical characteristics of the spine treated with different quantity of osteotomies under different working conditions. RESULTS: Three-level PSO improved the sagittal parameters more significantly, but resulted in longer operative time and greater blood loss (p < 0.05). Greater stress was found in the proximal screws and proximal junction area of the vertebra in the model simulating 1-level PSO. Larger stress of screws and vertebra was observed at the distal end in the model simulating 3-level PSO. CONCLUSION: Multilevel PSO works better for larger deformity correction than single-level PSO by allowing greater sagittal parameter correction and obtaining a better distribution of stress in the hardware construct, although with longer operation time and greater blood loss. Three-level osteotomy is recommended for the patients with preoperative of global kyphosis > 85.95°, T1 pelvic angle > 62.3°, sagittal vertical alignment > 299.55 mm, and pelvic tilt+ chin-brow vertical angle > 109.6°.

14.
Eur Urol ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38383257

RESUMO

BACKGROUND: Quantity and the spatial relationship of specific immune cell types can provide prognostic information in bladder cancer. OBJECTIVE: To characterize the spatial interplay and prognostic role of different immune cell subpopulations in bladder cancer. DESIGN, SETTING, AND PARTICIPANTS: A total of 2463 urothelial bladder carcinomas were immunostained with 21 antibodies using BLEACH&STAIN multiplex fluorescence immunohistochemistry in a tissue microarray format and analyzed using a framework of neuronal networks for an image analysis. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Spatial immune parameters were compared with histopathological parameters and overall survival data. RESULTS AND LIMITATIONS: The identification of > 300 different immune cell subpopulations and the characterization of their spatial relationship resulted in numerous spatial interaction patterns. Thirty-nine immune parameters showed prognostic significance in univariate analyses, of which 16 were independent from pT, pN, and histological grade in muscle-invasive bladder cancer. Among all these parameters, the strongest association with prolonged overall survival was identified for intraepithelial CD8+ cytotoxic T cells (time-dependent area under receiver operating characteristic curve [AUC]: 0.70), while stromal CD8+ T cells were less relevant (AUC: 0.65). A favorable prognosis of inflamed cancers with high levels of "exhaustion markers" suggests that TIM3, PD-L1, PD-1, and CTLA-4 on immune cells do not hinder antitumoral immune response in tumors rich of tumor infiltrating immune cells. CONCLUSIONS: The density of intraepithelial CD8+ T cells was the strongest prognostic feature in muscle-invasive bladder cancer. Given that tumor cell killing by CD8+ cytotoxic T lymphocytes through direct cell-to-cell-contacts represents the "terminal end route" of antitumor immunity, the quantity of "tumor cell adjacent CD8+ T cells" may constitute a surrogate for the efficiency of cancer recognition by the immune system that can be measured straightaway in routine pathology as the CD8 labeling index. PATIENT SUMMARY: Quantification of intraepithelial CD8+ T cells, the strongest prognostic feature identified in muscle-invasive bladder cancer, can easily be assessed by brightfield immunohistochemistry and is therefore "ready to use" for routine pathology.

15.
Carbohydr Polym ; 330: 121791, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368094

RESUMO

This work aimed to evaluate the structure and functional characteristics of starch from ten hulled oat cultivars grown in different locations in China. The protein, phosphorus, amylose, and starch contents were 0.2-0.4 %, 475.7-691.8 ppm, 16.2-23.0 %, and 93.6-96.7 %, respectively. All the starches showed irregular polygonal shapes and A-type crystallization with molecular weights ranging from 7.2 × 107 to 4.5 × 108 g/mol. The amounts of amylopectin A (DP 6-12), B1 (DP 13-24), B2 (DP 25-36), and B3 (DP > 36) chains were in the ranges of 10.3-16.0 %, 54.5-64.8 %, 16.5-21.1 %, and 4.9-13.1 %, respectively. The starches differed significantly in gelatinization temperatures, pasting viscosity, solubility, swelling power, rheological properties, and digestion parameters. The results revealed that the larger particle size could increase the peak viscosity of the starch paste. The presence of phosphorus increased the gelatinization temperature and enhanced the resistant starch content. The starch granules with higher crystallinity contained a higher proportion of phosphate, which increased final viscosity and setback viscosity but decreased rapidly digestible starch. Overall, oat starch with a high phosphorus content could be used to prepare low-glycemic-index food for diabetes patients.


Assuntos
Avena , Amido , Humanos , Amido/química , Avena/metabolismo , Amilopectina/química , Amilose/química , Viscosidade , Grão Comestível/metabolismo , Fósforo
16.
Angew Chem Int Ed Engl ; 63(5): e202315686, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38085492

RESUMO

Unraveling the chirality transfer mechanism of polymer assemblies and controlling their handedness is beneficial for exploring the origin of hierarchical chirality and developing smart materials with desired chiroptical activities. However, polydisperse polymers often lead to an ambiguous or statistical evaluation of the structure-property relationship, and it remains unclear how the iterative number of repeating units function in the helicity inversion of polymer assemblies. Herein, we report the macroscopic helicity and dynamic manipulation of the chiroptical activity of supramolecular assemblies from discrete azobenzene-containing oligomers (azooligomers), together with the helicity inversion and morphological transition achieved solely by changing the iterative chain lengths. The corresponding assemblies also differ from their polydisperse counterparts in terms of thermodynamic properties, chiroptical activities, and morphological control.

17.
J Neurosurg Spine ; 40(3): 365-374, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064699

RESUMO

OBJECTIVE: The aim of this study was to investigate the factors affecting postoperative quality of life in patients with ankylosing spondylitis (AS) and thoracolumbar kyphosis (TLK), and establish a personalized sagittal reconstruction strategy. METHODS: Patients with AS and TLK who underwent pedicle subtraction osteotomy (PSO) from February 2009 to May 2019 were retrospectively included. Quality of life and spinal sagittal radiographic parameters were collected before surgery and at the last follow-up. Patients were divided into two groups based on the attainment of minimal clinically important difference (MCID) on the Bath Ankylosing Spondylitis Functional Index and Oswestry Disability Index. Comparisons of radiographic parameters and clinical outcomes were conducted between and within groups. Regression analysis was used to identify the risk factors within the missing MCID cohort. Sagittal reconstruction equations were established using the pelvic incidence (PI) and thoracic inlet angle (TIA) in the reached MCID cohort. RESULTS: The study comprised 82 participants. Significant improvements were observed in most radiographic parameters and all quality-of-life indicators during the final follow-up compared with the preoperative measures (p < 0.05). Factors including cervical lordosis (CL) ≥ 18° (OR 9.75, 95% CI 2.26-58.01, p = 0.005), chin-brow vertical angle (CBVA) ≥ 25° (OR 14.7, 95% CI 3.29-91.21, p = 0.001), and pelvic tilt (PT) ≥ 33° (OR 21.77, 95% CI 5.92-103.44, p < 0.001) independently correlated with a failure to attain MCID (p < 0.05). Sagittal realignment targets were constructed as follows: sacral slope (SS) = 0.84 PI - 17.4° (R2 = 0.81, p < 0.001), thoracic kyphosis (TK) = 0.51 PI + 10.8° (R2 = 0.46, p = 0.002), neck tilt (NT) = 0.52 TIA - 5.8° (R2 = 0.49, p < 0.001), and T1 slope (T1S) = 0.48 TIA + 5.8° (R2 = 0.45, p = 0.002). CONCLUSIONS: PSO proved efficacious in treating AS complicated by TLK, yielding favorable outcomes. CBVA ≥ 25°, CL ≥ 18°, and PT ≥ 33° were the primary factors affecting postoperative quality of life in patients with AS. The personalized sagittal reconstruction strategy in this study focused on the subjective sensations and daily needs of patients with AS, which were delineated by the equations SS = 0.84 PI - 17.4°, TK = 0.51 PI + 10.8°, NT = 0.52 TIA - 5.8°, and T1S = 0.48 TIA + 5.8°.


Assuntos
Cifose , Lordose , Espondilite Anquilosante , Humanos , Espondilite Anquilosante/diagnóstico por imagem , Espondilite Anquilosante/cirurgia , Espondilite Anquilosante/complicações , Qualidade de Vida , Estudos Retrospectivos , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/cirurgia , Cifose/diagnóstico por imagem , Cifose/cirurgia , Cifose/complicações , Lordose/diagnóstico por imagem , Lordose/cirurgia , Fatores de Risco
19.
J Hazard Mater ; 463: 132879, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37944238

RESUMO

Immobilized photocatalysts represent a promising candidate for the wastewater treatments due to their good reusability, high stability and low eco-risk. Mass transfer within the immobilized catalytic bed is a crucial process that determines the contacting, adsorption, and degradation kinetics in the photodegradation. In this study, a floating catalytic foam (FCF) with a prominent pumping effect was designed to promote mass transfer. The polyurethane foam immobilized with rGO/TiO2/ultrathin-g-C3N4 photocatalyst (PRTCN) was prepared by a simple dip-coating and Uv-light aging process. It was found that the hydrophilic-hydrophobic interfaces could not only contribute to the floating of the catalyst but also establish a temperature gradient across the floating immobilized catalyst. In addition, the temperature gradient induced convection could serve as a built-in pump to effectively promote the diffusion and adsorption of target antibiotic molecules during the photocatalytic process. Therefore, the PRTCN demonstrated a high photodegradation and mineralization efficiency with excellent reusability and anti-interference capability. Moreover, the photodegradation mechanism and the intermediates' toxicity of norfloxacin were detailly investigated by ultra-high resolution electrospray time-of-flight mass spectrometry, density functional theory simulation and ECOSAR estimation. This work proposed a facile and sustainable strategy to enhance the mass transfer problem on immobilized photocatalysts, which could promote the application of the immobilized photocatalysts in the real water-treatment scenarios.


Assuntos
Antibacterianos , Luz , Convecção , Temperatura Alta , Norfloxacino , Catálise
20.
Biomedicines ; 11(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38137396

RESUMO

Prognostic markers in routine clinical management of breast cancer are often assessed using RNA-based multi-gene panels that depend on fluctuating tumor purity. Multiplex fluorescence immunohistochemistry (mfIHC) holds the potential for an improved risk assessment. To enable automated prognosis marker detection (i.e., progesterone receptor [PR], estrogen receptor [ER], androgen receptor [AR], GATA3, TROP2, HER2, PD-L1, Ki67, TOP2A), a framework for automated breast cancer identification was developed and validated involving thirteen different artificial intelligence analysis steps and an algorithm for cell distance analysis using 11+1-marker-BLEACH&STAIN-mfIHC staining in 1404 invasive breast cancers of no special type (NST). The framework for automated breast cancer detection discriminated normal glands from malignant glands with an accuracy of 98.4%. This approach identified that five (PR, ER, AR, GATA3, PD-L1) of nine biomarkers were associated with prolonged overall survival (p ≤ 0.0095 each) and two of these (PR, AR) were found to be independent risk factors in multivariate analysis (p ≤ 0.0151 each). The combined assessment of PR-ER-AR-GATA3-PD-L1 as a five-marker prognosis score showed strong prognostic relevance (p < 0.0001) and was an independent risk factor in multivariate analysis (p = 0.0034). Automated breast cancer detection in combination with an artificial intelligence-based analysis of mfIHC enables a rapid and reliable analysis of multiple prognostic parameters. The strict limitation of the analysis to malignant cells excludes the impact of fluctuating tumor purity on assay precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...