Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513452

RESUMO

Betaine is a kind of zwitterionic surfactant with both positive and negative charge groups on the polar head, showing good surface activity and aggregation behaviors. The interfacial adsorption, structures and properties of n-dodecyl betaine (NDB) at different surface coverages at the air-water interface are studied through molecular dynamics (MD) simulations. Interactions between the polar heads and water molecules, the distribution of water molecules around polar heads, the tilt angle of the NDB molecule, polar head and tail chain with respect to the surface normal, the conformations and lengths of the tail chain, and the interfacial thickness of the NDB monolayer are analyzed. The change of surface coverage hardly affects the locations and spatial distributions of the water molecules around the polar heads. As more NDB molecules are adsorbed at the air-water interface, the number of hydrogen bonds between polar heads and water molecules slightly decreases, while the lifetimes of hydrogen bonds become larger. With the increase in surface coverage, less gauche defects along the alkyl chain and longer NDB chain are obtained. The thickness of the NDB monolayer also increases. At large surface coverages, tilted angles of the polar head, tail chain and whole NDB molecule show little change with the increase in surface area. Surface coverages can change the tendency of polar heads and the tail chain for the surface normal.

2.
Sensors (Basel) ; 23(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37430800

RESUMO

Based on the principle of Contactless Conductivity Detection (CCD), a new contactless cross-correlation velocity measurement system with a three-electrode construction is developed in this work and applied to the contactless velocity measurement of gas-liquid two-phase flow in small channels. To achieve a compact design and to reduce the influence of the slug/bubble deformation and the relative position change on the velocity measurement, an electrode of the upstream sensor is reused as an electrode of the downstream sensor. Meanwhile, a switching unit is introduced to ensure the independence and consistency of the upstream sensor and the downstream sensor. To further improve the synchronization of the upstream sensor and the downstream sensor, fast switching and time compensation are also introduced. Finally, with the obtained upstream and downstream conductance signals, the velocity measurement is achieved by the principle of cross-correlation velocity measurement. To test the measurement performance of the developed system, experiments are carried out on a prototype with a small channel of 2.5 mm. The experimental results show that the compact design (three-electrode construction) is successful, and its measurement performance is satisfactory. The velocity range for the bubble flow is 0.312-0.816 m/s, and the maximum relative error of the flow rate measurement is 4.54%. The velocity range for the slug flow is 0.161 m/s-1.250 m/s, and the maximum relative error of the flow rate measurement is 3.70%.

3.
Sensors (Basel) ; 22(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36433583

RESUMO

In recent years, CID sensors have displayed great development potential in parameter measurement of gas-liquid two-phase flow in small channels. However, the fundamental/mechanism research on the response characteristics of CID sensors is relatively insufficient. This work focuses on the investigation of the influence of separation distance between slugs on the impedance (real part, imaginary part and amplitude) response characteristics of slug flow in small channels. Experiments were carried out with the CID sensors in four small channels with inner pipe diameters of 1.96 mm, 2.48 mm, 3.02 mm and 3.54 mm, respectively. The experimental results show that for a CID sensor, the slug separation distance has significant influence on the impedance response characteristics. There is a critical value of slug separation distance. When the slug separation distance is larger than the critical value, the impedance response characteristics of each slug can be considered independent of each other, i.e., there is no interaction between the slugs. When the slug separation distance is less than the critical value, the impedance response characteristics show obvious interaction between the slugs. It is indicated that the ratios of the critical values to the pipe inner diameters are approximate 100.


Assuntos
Impedância Elétrica
4.
Sensors (Basel) ; 22(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35590849

RESUMO

In this work, an adaptive generalized cross-correlation (AGCC) method is proposed that focuses on the problem of the conventional cross-correlation method not effectively realizing the time delay estimation of signals with strong periodicity. With the proposed method, the periodicity of signals is judged and the center frequencies of the strongly periodical components are determined through the spectral analysis of the input signals. Band-stop filters that are used to suppress the strongly periodical components are designed and the mutual power spectral density of the input signals that is processed by the band-stop filters is calculated. Then, the cross-correlation function that is processed is the inverse Fourier transform of the mutual power spectral density. Finally, the time delay is estimated by seeking the peak position of the processed cross-correlation function. Simulation experiments and practical velocity measurement experiments were carried out to verify the effectiveness of the proposed AGCC method. The experimental results showed that the new AGCC method could effectively realize the time delay estimation of signals with strong periodicity. In the simulation experiments, the new method could realize the effective time delay estimation of signals with strong periodicity when the energy ratio of the strongly periodical component to the aperiodic component was under 150. Meanwhile, the cross-correlation method and other generalized cross-correlation methods fail in time delay estimation when the energy ratio is higher than 30. In the practical experiments, the velocity measurement of slug flow with strong periodicity was implemented in small channels with inner diameters of 2.0 mm, 2.5 mm and 3.0 mm. With the proposed method, the relative errors of the velocity measurement were less than 4.50%.


Assuntos
Periodicidade , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Análise de Fourier , Ultrassonografia
5.
Sensors (Basel) ; 21(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34640701

RESUMO

In this work, a new capacitively coupled contactless conductivity detection (C4D) sensor for microfluidic devices is developed. By introducing an LC circuit, the working frequency of the new C4D sensor can be lowered by the adjustments of the inductor and the capacitance of the LC circuit. The limits of detection (LODs) of the new C4D sensor for conductivity/ion concentration measurement can be improved. Conductivity measurement experiments with KCl solutions were carried out in microfluidic devices (500 µm × 50 µm). The experimental results indicate that the developed C4D sensor can realize the conductivity measurement with low working frequency (less than 50 kHz). The LOD of the C4D sensor for conductivity measurement is estimated to be 2.2 µS/cm. Furthermore, to show the effectiveness of the new C4D sensor for the concentration measurement of other ions (solutions), SO42- and Li+ ion concentration measurement experiments were also carried out at a working frequency of 29.70 kHz. The experimental results show that at low concentrations, the input-output characteristics of the C4D sensor for SO42- and Li+ ion concentration measurement show good linearity with the LODs estimated to be 8.2 µM and 19.0 µM, respectively.


Assuntos
Dispositivos Lab-On-A-Chip , Condutividade Elétrica , Limite de Detecção
6.
Rev Sci Instrum ; 92(10): 105006, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717397

RESUMO

The flow parameter measurement of the gas-liquid two-phase flow in small channels is very crucial and challenging in both academia and industry. Conventional techniques based on radiations, optics, acoustics, or electrics most lose their superiorities in the scenario with small channels due to the spatial limitation and the online and contactless measurement requirements. In addition, the conductive characteristic of the two-phase flow is equivalent to an impedance rather than a resistance due to the existence of multi-phases. The equivalent impedance information of the two-phase flow, especially the imaginary part, is promising to provide more flowing details but has seldom been detected or analyzed. In this paper, a method for the void fraction measurement of bubble/slug flow in small channels is proposed. The method implements void fraction measurement in a contactless way, based on the acquisition of the total impedance information of the gas-liquid two-phase flow. First, a new contactless impedance detection sensor is designed, based on the simulated inductor technique and the analog phase sensitive demodulation technique, to obtain the complete equivalent impedance information of the two-phase fluid. Then, based on the flow pattern identification result, the void fraction measurement model is developed, which is a fusion of the relationships between the void fraction and the real part/the imaginary part of the equivalent impedance information, respectively. Experimental results on prototypes with different inner diameters (2.48, 3.64, and 4.52 mm, respectively) validate the effectiveness of the proposed void fraction method. The maximum void fraction measurement biases are within 5.0%.

7.
Sensors (Basel) ; 21(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209920

RESUMO

Electrodes are basic components of C4D (capacitively coupled contactless conductivity detection) sensors, and different electrode structures (the configuration pattern or the electrode geometry) can lead to different measurement results. In this work, the effects of electrode geometry of radial configuration on the measurement performance of C4D sensors are investigated. Two geometrical parameters, the electrode length and the electrode angle, are considered. A FEM (finite element method) model based on the C4D method is developed. With the FEM model, corresponding simulation results of conductivity measurement with different electrode geometry are obtained. Meanwhile, practical experiments of conductivity measurement are also conducted. According to the simulation results and experimental results, the optimal electrode geometry of the C4D sensor with radial configuration is discussed and proposed. The recommended electrode length is 5-10 times of the pipe inner diameter and the recommended electrode angle is 120-160°.

8.
Sensors (Basel) ; 20(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066126

RESUMO

Capacitively coupled electrical impedance tomography (CCEIT) is a new kind of electrical resistance tomography (ERT) which realizes contactless measurement by capacitive coupling and extends traditional resistance measurement to total impedance measurement. This work investigates the performance of a CCEIT sensor with three different configurations, including the unshielded configuration, the shielded configuration A (the CCEIT sensor with the external shield) and the shielded configuration B (the CCEIT sensor with both the external shield and the radial screens). The equivalent circuit models of the measurement electrode pair of the CCEIT sensor with different configurations were developed. Additionally, three CCEIT prototypes corresponding to the three configurations were developed. Both the simulation work and experiments were carried out to compare various aspects of the three CCEIT prototypes, including the sensitivity distribution, the impedance measurement and the practical imaging performance. Simulation results show that shielded configurations improve the overall average sensitivity of the sensitivity distributions. Shielded configuration A contributes to improve the uniformity of the sensitivity distributions, while shielded configuration B reduces the uniformity in most cases. Experimental results show that the shielded configurations have no significant influence on the imaging quality of the real part of impedance measurement, but do make sense in improving the imaging performance of the imaginary part and the amplitude of impedance measurement. However, configuration B (with radial screens) has no significant advantage over configuration A (without radial screens). This work provides an insight into how shielding measures influence the performance of the CCEIT sensor, in addition to playing an important role in shielding unwanted noise and disturbances. The research results can provide a useful reference for further development of CCEIT sensors.

9.
Rev Sci Instrum ; 91(5): 055001, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32486734

RESUMO

Based on the C4D technique and cross correlation velocity measurement technique, a new method for bubble/slug velocity measurement of the gas-liquid two-phase flow in small channels is proposed. A new C4D sensor, which is suitable for the parameter measurement of the gas-liquid two-phase flow in small channels, is developed by introducing the principle of capacitive reactance elimination. With two new C4D sensors, a bubble/slug velocity measurement system is developed, and the bubble/slug velocity is determined by the cross correlation velocity measurement technique. To verify the effectiveness of the proposed bubble/slug velocity measurement method, three prototypes of bubble/slug velocity measurement systems with different diameters (1.82 mm, 2.65 mm, and 2.96 mm, respectively) were established, and the bubble/slug measurement experiments were carried out. The research results show that the capacitive reactance elimination is an effective way to overcome the unfavorable influence of the coupled capacitances on measurement results. The experimental results indicate that the proposed method can successfully realize the bubble/slug velocity measurement in small channels, and the velocity measurement accuracy is satisfactory. For the three prototypes of the bubble/slug velocity measurement system, the maximum relative errors of the bubble/slug velocity measurement are all less than 5%.

10.
J Biol Chem ; 295(14): 4541-4555, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094229

RESUMO

Many members of the C-type lectin family of glycan-binding receptors have been ascribed roles in the recognition of microorganisms and serve as key receptors in the innate immune response to pathogens. Other mammalian receptors have become targets through which pathogens enter target cells. These receptor roles have often been documented with binding studies involving individual pairs of receptors and microorganisms. To provide a systematic overview of interactions between microbes and the large complement of C-type lectins, here we developed a lectin array and suitable protocols for labeling of microbes that could be used to probe this array. The array contains C-type lectins from cow, chosen as a model organism of agricultural interest for which the relevant pathogen-receptor interactions have not been previously investigated in detail. Screening with yeast cells and various strains of both Gram-positive and -negative bacteria revealed distinct binding patterns, which in some cases could be explained by binding to lipopolysaccharides or capsular polysaccharides, but in other cases they suggested the presence of novel glycan targets on many of the microorganisms. These results are consistent with interactions previously ascribed to the receptors, but they also highlight binding to additional sugar targets that have not previously been recognized. Our findings indicate that mammalian lectin arrays represent unique discovery tools for identifying both novel ligands and new receptor functions.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Lectinas Tipo C/metabolismo , Análise Serial de Proteínas/métodos , Sequência de Aminoácidos , Animais , Bovinos , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Lectinas Tipo C/química , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
11.
Sensors (Basel) ; 20(4)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079132

RESUMO

Resistivity logging is an important technique for identifying and estimating reservoirs. Oil-based mud (OBM) can improve drilling efficiency and decrease operation risks, and has been widely used in the well logging field. However, the non-conductive OBM makes the traditional logging-while-drilling (LWD) method with low frequency ineffective. In this work, a new oil-based LWD method is proposed by combining the capacitively coupled contactless conductivity detection (C4D) technique and the inductive coupling principle. The C4D technique is to overcome the electrical insulation problem of the OBM and construct an effective alternating current (AC) measurement path. Based on the inductive coupling principle, an induced voltage can be formed to be the indirect excitation voltage of the AC measurement path. Based on the proposed method, a corresponding logging instrument is developed. Numerical simulation was carried out and results show that the logging instrument has good measurement accuracy, deep detection depth and high vertical resolution. Practical experiments were also carried out, including the resistance box experiment and the well logging experiment. The results of the resistance box experiment show that the logging instrument has good resistance measurement accuracy. Lastly, the results of the well logging experiment indicate that the logging instrument can accurately reflect the positions of different patterns on the wellbore of the experimental well. Both numerical simulation and practical experiments verify the feasibility and effectiveness of the new method.

12.
Sensors (Basel) ; 20(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861444

RESUMO

This work proposes a new positioning method based on multiple ultrasonic sensors for the autonomous mobile robot. Unlike the conventional ultrasonic positioning methods, this new method can realize higher accuracy ultrasonic positioning without additional temperature information. Three ultrasonic sensors are used for positioning. A generalized measurement model is established for general sensor configuration. A simplified measurement model, which considers the computational complexity, is also established for linear/simplified sensor configuration. Three time-of-flight signals are obtained from the three ultrasonic sensors. The coordinates of the target are calculated by the ratios of time-of-flights. Positioning experiments were carried out to verify the feasibility and effectiveness of the proposed method. Experimental results show that the new ultrasonic positioning method is effective, both the two established models can implement positioning successfully, and the positioning accuracy is satisfactory. Compared with the conventional ultrasonic positioning method with the default ultrasonic velocity, the positioning accuracy is greatly improved by the proposed method. Compared with the ultrasonic positioning method with additional temperature compensation, the results obtained by the proposed method are comparable.

13.
J Biol Chem ; 294(41): 14845-14859, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31488546

RESUMO

CD23, the low-affinity IgE receptor found on B lymphocytes and other cells, contains a C-terminal lectin-like domain that resembles C-type carbohydrate-recognition domains (CRDs) found in many glycan-binding receptors. In most mammalian species, the CD23 residues required to form a sugar-binding site are present, although binding of CD23 to IgE does not involve sugars. Solid-phase binding competition assays, glycoprotein blotting experiments, and glycan array analysis employing the lectin-like domains of cow and mouse CD23 demonstrate that they bind to mannose, GlcNAc, glucose, and fucose and to glycoproteins that bear these sugars in nonreducing terminal positions. Crystal structures of the cow CRD in the presence of α-methyl mannoside and GlcNAcß1-2Man reveal that a range of oligosaccharide ligands can be accommodated in an open binding site in which most interactions are with a single terminal sugar residue. Although mouse CD23 shows a pattern of monosaccharide and glycoprotein binding similar to cow CD23, the binding is weaker. In contrast, no sugar binding was observed in similar experiments with human CD23. The absence of sugar-binding activity correlates with accumulation of mutations in the gene for CD23 in the primate lineage leading to humans, resulting in loss of key sugar-binding residues. These results are consistent with a role for CD23 in many species as a receptor for potentially pathogenic microorganisms as well as IgE. However, the ability of CD23 to bind several different ligands varies between species, suggesting that it has distinct functions in different organisms.


Assuntos
Polissacarídeos/metabolismo , Receptores de IgE/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Bovinos , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores de IgE/química
14.
Sensors (Basel) ; 19(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146459

RESUMO

This work reports a new simulated inductor which is suitable for a Contactless Electrical Tomography (CET) system and can effectively overcome the unfavorable influence of coupling capacitance on the measurement results. By detailed analysis and comparison, it is found that the grounded simulated inductor has a simple circuit construction but its output current is not equal to its input current, while the floating simulated inductor can be used as an independent inductor module but its circuit structure is relatively complex. A new simulated inductor is designed by compensating the currents from the common node of an introduced independent power source to the main circuit. The new simulated inductor combines the advantages of the grounded simulated inductor and the floating simulated inductor. It has the simple construction similar to that of the grounded simulated inductor and its input current is equal to the output current, which means it can be used as an independent module. The impedance measurement and practical image reconstruction experiments were carried out to verify the effectiveness of the new simulated inductor. The experimental results show that the design of the new simulated inductor is successful, and the performance of the impedance measurement is satisfactory. The signal-to-noise ratio of the CET system is improved. Meanwhile, the research work also indicates that in the case when the independent power source is not available, the new simulated inductor is also an effective alternative method. But the phase difference between input signal and output signal is approximately 90° when the elimination principle is realized.

15.
Exp Cell Res ; 370(2): 417-425, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30003879

RESUMO

Focal adhesions (FAs) play an important role in cancer cell migration and metastasis by linking the actin cytoskeleton to the extracellular matrix, allowing the cell to generate traction. SUMOylation is a post-translational modification of proteins on lysine residues that can affect protein localisation, turnover and protein-protein interactions. In this study, we demonstrate that talin, a key component of FAs, can be post-translationally modified by SUMOylation in MDA-MB-231 breast cancer cells and U2OS osteosarcoma cells. Furthermore we demonstrate that SUMOylation regulates the dynamic activities of FAs including their number, size and turnover rate. Inhibiting SUMOylation significantly reduced the speed of cell migration. The identification of talin as a SUMO target provides insight into the mechanisms regulating focal adhesion formation and turnover and potentially identifies a novel mechanism underlying cell migration.


Assuntos
Movimento Celular/fisiologia , Adesões Focais/metabolismo , Sumoilação/fisiologia , Talina/metabolismo , Citoesqueleto de Actina/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Vinculina/metabolismo
16.
Sensors (Basel) ; 16(2): 159, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26828488

RESUMO

Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

17.
Sensors (Basel) ; 16(2): 165, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26828493

RESUMO

A new capacitively coupled contactless conductivity detection (C(4)D) sensor with an improved simulated inductor is developed in this work. The improved simulated inductor is designed on the basis of the Riordan-type floating simulated inductor. With the improved simulated inductor, the negative influence of the coupling capacitances is overcome and the conductivity measurement is implemented by the series resonance principle. The conductivity measurement experiments are carried out in three pipes with different inner diameters of 3.0 mm, 4.6 mm and 6.4 mm, respectively. The experimental results show that the designs of the new C(4)D sensor and the improved simulated inductor are successful. The maximum relative error of the conductivity measurement is less than 5%. Compared with the C(4)D sensors using practical inductors, the measurement accuracy of the new C(4)D sensor is comparable. The research results also indicate that the adjustability of a simulated inductor can reduce the requirement for the AC source and guarantee the interchangeableness. Meanwhile, it is recommended that making the potential of one terminal of a simulated inductor stable is beneficial to the running stability. Furthermore, this work indirectly verifies the possibility and feasibility of the miniaturization of the C(4)D sensor by using the simulated inductor technique and lays a good foundation for future research work.

18.
Sensors (Basel) ; 14(12): 22431-46, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25587879

RESUMO

A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

19.
Rev Sci Instrum ; 85(12): 125002, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25554318

RESUMO

Based on the reflected longitudinal wave, a new non-intrusive method for pressure measurement is proposed. The acoustoelastic theory and the thin-shell theory are introduced to develop the pressure measurement model in cylindrical pressure vessels. And a pressure measurement system is constructed to evaluate the effectiveness of the proposed method. The pressure measurement is implemented by measuring the travel-time change between two received ultrasonic sensors. The experimental results verify the feasibility and effectiveness of this new non-intrusive method. Compared with the non-intrusive pressure measurement method based on the critically refracted longitudinal wave (LCR wave), the proposed non-intrusive pressure measurement method has the advantages of higher sensitivity and higher signal-to-noise ratio.

20.
Sensors (Basel) ; 13(2): 1563-77, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23353139

RESUMO

Combining the Capacitively Coupled Contactless Conductivity Detection (C4D) technique and the principle of cross correlation flow measurement, a new method for flow rate measurement in millimeter-scale pipes was proposed. The research work included two parts. First, a new five-electrode C4D sensor was developed. Second, with two conductivity signals obtained by the developed sensor, the flow rate measurement was implemented by using the principle of cross correlation flow measurement. The experimental results showed that the proposed flow rate measurement method was effective, the developed five-electrode C4D sensor was successful, and the measurement accuracy was satisfactory. In five millimeter-scale pipes with different inner diameters of 0.5, 0.8, 1.8, 3.0 and 3.9 mm respectively, the maximum relative difference of the flow rate measurement between the reference flow rate and the measured flow rate was less than 5%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...