Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(6): 2527-2537, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36725089

RESUMO

Manganese ion [Mn(II)] is a background constituent existing in natural waters. Herein, it was found that only 59% of bisphenol A (BPA), 47% of bisphenol F (BPF), 65% of acetaminophen (AAP), and 49% of 4-tert-butylphenol (4-tBP) were oxidized by 20 µM of Fe(VI), while 97% of BPA, 95% of BPF, 96% of AAP, and 94% of 4-tBP could be oxidized by the Fe(VI)/Mn(II) system [20 µM Fe(VI)/20 µM Mn(II)] at pH 7.0. Further investigations showed that bisphenol S (BPS) was highly reactive with reactive iron species (RFeS) but was sluggish with reactive manganese species (RMnS). By using BPS and methyl phenyl sulfoxide (PMSO) as the probe compounds, it was found that reactive iron species contributed primarily for BPA oxidation at low Mn(II)/Fe(VI) molar ratios (below 0.1), while reactive manganese species [Mn(VII)/Mn(III)] contributed increasingly for BPA oxidation with the elevation of the Mn(II)/Fe(VI) molar ratio (from 0.1 to 3.0). In the interaction of Mn(II) and Fe(VI), the transfer of oxidation capacity from Fe(VI) to Mn(III), including the formation of Mn(VII) and the inhibition of Fe(VI) self-decay, improved the amount of electron equivalents per Fe(VI) for BPA oxidation. UV-vis spectra and dominant transformation product analysis further revealed the evolution of iron and manganese species at different Mn(II)/Fe(VI) molar ratios.


Assuntos
Manganês , Poluentes Químicos da Água , Manganês/química , Ferro/química , Oxirredução , Poluentes Químicos da Água/química
2.
Water Res ; 197: 117094, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33836297

RESUMO

To reveal the role of ferrate self-decomposition and the fates of intermediate iron species [Fe(V)/Fe(IV) species] during ferrate oxidation, the reaction between ferrate and methyl phenyl sulfoxide (PMSO) at pH 7.0 was investigated as a model system in this study. Interestingly, the apparent second-order rate constants (kapp) between ferrate and PMSO was found to increase with ferrate dosage in the condition of excess ferrate in borate buffer. This ferrate dosage effect was diminished greatly in the condition of excess PMSO where ferrate self-decomposition was lessened largely, or counterbalanced by adding a strong complexing ligand (e.g. pyrophosphate) to sequester Fe(V) oxidation, demonstrating that the Fe(V) species derived from ferrate self-decomposition plays an important role in PMSO oxidation. A mechanistic kinetics model involving the ferrate self-decomposition and PMSO oxidation by Fe(VI), Fe(V) and Fe(IV) species was then developed and validated. The modeling results show that up to 99% of the PMSO oxidation was contributed by the ferrate self-decomposition resultant Fe(V) species in borate buffer, revealing that ferrate self-decomposition is also a self-activation process. The direct Fe(VI) oxidation of PMSO was impervious to presence of phosphate or Fe(III), while the Fe(V) oxidation pathway was strongly inhibited by phosphate complexation or enhanced with Fe(III). Similar ferrate dosage effect and its counterbalance by pyrophosphate as well as the Fe(III) enhancement were also observed in ferrate oxidation of micropollutants like carbamazepine, diclofenac and sulfamethoxazole, implying the general role of Fe(V) and promising Fe(III) enhancement during ferrate oxidation of micropollutants.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Compostos Férricos , Ferro , Cinética , Oxirredução , Sulfóxidos , Água
3.
Environ Sci Technol ; 53(9): 5282-5291, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30985102

RESUMO

Sulfamethoxazole (SMX) is a broad-spectrum antibiotic and was largely used in breeding industry. The reaction rate of SMX with KMnO4 is slow, and the adsorption efficiency of biochar for SMX was inferior (less than 11% in 30 min). By adding biochar powder into SMX solution with the addition of permanganate, the oxidation ratio of SMX surged to 97% in 30 min, and over 58% of the total organic carbon (TOC) was simultaneously removed. KMnO4 interacted with biochar and resulted in the formation of highly oxidative intermediate manganese species, which transformed SMX into hydrolysis products, oxygen-transfer products, and self-coupling products. Brunauer-Emmett-Teller (BET) analysis showed that surface area, total pore volume, and micropore volume of biochar increased by 32.1%, 36.4%, and 80.6%, respectively, after reaction process. This in situ activation of biochar with KMnO4 enhanced its adsorption capacity and led to great improvement of TOC removal. Besides KMnO4 oxidation, biochar also enhanced TOC removal in Mn(III) oxidation (KMnO4+ bisulfite) and ozonization of SMX. Considering that KMnO4 could react with biochar and result in the formation of intermediate manganese species, while biochar can be simultaneously activated and exhibit high capacity for organic adsorption, the combination of biochar with the chemical/advanced oxidation could be a promising process for the removal of environmental pollutants.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Manganês , Compostos de Manganês , Estresse Oxidativo , Óxidos , Sulfametoxazol
4.
Environ Sci Technol ; 52(23): 13897-13907, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30379540

RESUMO

Ferrate (K2FeO4) is a powerful oxidant and up to 3 mol of electrons could be captured by 1 mol of ferrate in the theoretical conversion of Fe(VI)-Fe(V)-Fe(IV)-Fe(III). However, it is reported that the utilization efficiency of the ferrate oxidation capacity is quite low because of the rapid autodecomposition of intermediate iron species, which negatively influences the potential of ferrate on organic pollutants control. We accidentally found that for the ferrate oxidation of carbamazepine (CBZ), bisphenol S (BPS), diclofenac (DCF), and ciprofloxacin (CIP), the determined reaction rate constants were 1.7-2.4 times lower in phosphate buffer than those in borate buffer at pH 8.0. For the reaction of ferrate with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) at pH 7.0, the determined reaction stoichiometries were 1:1.04 in 100 mM phosphate buffer, 1:1.18 in 10 mM phosphate buffer, and 1:1.93 in 10 mM borate buffer, respectively. The oxidation ability of ferrate seems depressed in phosphate buffer. A kinetic model involving the oxidation of ABTS by Fe(VI), Fe(V) and Fe(IV) species was developed and fitted the ABTS•+ formation kinetics well under different buffer conditions. The results showed that phosphate exhibited little influence on the oxidation ability of Fe(VI) and Fe(IV) species, but decreased the specific rate constants of ABTS with Fe(V) species by 1-2 orders of magnitude, resulting in the outcompeting of Fe(V) autodecomposition pathway. The complexation between phosphate anions and Fe(V) species may account for the inhibition effect of phosphate buffer. Considering that many studies regarding ferrate oxidation were carried out in phosphate buffer, the actual oxidation ability of ferrate may be underestimated.


Assuntos
Fosfatos , Poluentes Químicos da Água , Compostos Férricos , Concentração de Íons de Hidrogênio , Ferro , Cinética , Oxidantes , Oxirredução
5.
Water Res ; 131: 208-217, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29289922

RESUMO

Bisphenol S (BPS), as a main alternative of bisphenol A for the production of industrial and consumer products, is now frequently detected in aquatic environments. In this work, it was found that free chlorine could effectively degrade BPS over a wide pH range from 5 to 10 with apparent second-order rate constants of 7.6-435.3 M-1s-1. A total of eleven products including chlorinated BPS (i.e., mono/di/tri/tetrachloro-BPS), 4-hydroxybenzenesulfonic acid (BSA), chlorinated BSA (mono/dichloro-BSA), 4-chlorophenol (4CP), and two polymeric products were detected by high performance liquid chromatography and electrospray ionization-tandem quadrupole time-of-flight mass spectrometry. Two parallel transformation pathways were tentatively proposed: (i) BPS was attacked by stepwise chlorine electrophilic substitution with the formation of chlorinated BPS. (ii) BPS was oxidized by chlorine via electron transfer leading to the formation of BSA, 4CP and polymeric products. Humic acid (HA) significantly suppressed the degradation rates of BPS even taking chlorine consumption into account, while negligibly affected the products species. The inhibitory effect of HA was reasonably explained by a two-channel kinetic model. It was proposed that HA negligibly influenced pathway i while appreciably inhibited the degradation of BPS through pathway ii, where HA reversed BPS phenoxyl radical (formed via pathway ii) back to parent BPS.


Assuntos
Cloro/química , Substâncias Húmicas , Fenóis/química , Sulfonas/química , Poluentes Químicos da Água/química , Cromatografia Líquida de Alta Pressão , Halogenação , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...