Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 18671-18685, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591358

RESUMO

Non-free radical photocatalysis with metal oxide catalysts is an important advanced oxidation process that enables the removal of various emerging environmental pollutants, such as tetracycline. Here, four hexagonal La2O3 photocatalysts with different densities of oxygen vacancy and crystalline features are synthesized and then further treated by ball milling. Ball milling of these La2O3 photocatalysts is found to increase the amount of oxygen vacancies on their surfaces and thereby the amount of 1O2 species produced by them. The photocatalytic degradation of TC by these La2O3 photocatalysts depends on the oxygen vacancies present on them. Furthermore, the ones with a strong (101) diffraction peak remove tetracycline from water systems largely with 1O2 and •OH species, whereas those with a weak (101) diffraction peak do so mainly via 1O2 and direct electron transfer (DET) process. Their overall catalytic properties are also studied by density functional theory calculations. Moreover, the organic products produced from tetracycline by La2O3 photocatalysts containing a strong (101) diffraction peak are found to be less toxic than those produced by La2O3 photocatalysts containing a weak (101) diffraction peak. This study also provides convincing evidence that the structures of La2O3 determine the species that is produced by it and that end up mediating photocatalytic reaction pathways (i.e., free radical versus non-free radical) to degrade an emerging environment pollutant.

2.
Environ Sci Technol ; 57(41): 15656-15666, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37747788

RESUMO

Nanoplastics (NPs) have different colors, which could affect their photoaging processes in aquatic environments. This study investigated the effects of irradiation on physicochemical properties and aggregation kinetics of five colored NPs. Photodegradation rates and photooxidation degrees ranked white ≈ yellow > red > blue ≈ black NPs, indicating that NPs with longer color wavelengths photoaged faster. The discoloration process followed color fading (2-14 days, except for white NPs), yellowing (10-16 days), yellow fading (18 days), and turning transparent (20-22 days). White NPs exhibited a different photoaging sequence (C-H → C-OH → C═O → O-C═O) from others. Photodegradation was mainly controlled by singlet oxygen, producing 13 chemicals that were mostly organic acids. The overall colloidal stability of pristine NPs ranked blue > yellow > red > black > white. Irradiation for 16 days retarded aggregation of white and other NPs in NaCl solution, raising the critical coagulation concentration (CCC) by 82.14 and 0.85-7.90%, respectively. Contrarily, irradiation promoted aggregation in CaCl2 solution by reducing the CCC of white (67.37%) and other (33.33-37.58%) NPs. The findings demonstrate that colored NPs underwent photoaging processes different from white/transparent NPs, which were focused by previous work, highlighting the important role of color in their environmental fate and transport.

3.
Chemosphere ; 318: 137936, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36702409

RESUMO

Frequent detection and joint toxicity of sulfonamides (SAs) and phthalate acid esters (PAEs) in water environment have caused serious health and safety problems that can be reduced by vertical flow constructed wetland (VFCW). However, it remains unclear what kind of substrate used in VFCW can synergistically remove SAs and PAEs. In this study, it was determined if biochar, zeolite, vermiculite, peat and sand synergistically removed sulfamethoxazole (SMX) and dimethyl phthalate (DMP) as representatives of SAs and PAEs by using batch and column experiments. The batch experiments showed that pseudo-second-order and intraparticle diffusion kinetics and Freundlich isotherm could better describe the synergistic adsorption of SMX and DMP on each substrate. SMX promoted hydrophobic interaction between DMP and each substrate so that low concentration DMP almost was adsorbed completely at neutral pH. Both neutral and alkaline pH conditions were favorable for synergistic adsorption of SMX and DMP on each substrate. The column experiments showed that removal of SMX or DMP in VFCW by substrate adsorption alone was limited with run time increasing, but SMX and DMP were effectively removed with run time increasing when loaded with simulated wastewater, SMX and DMP. The VFCW not only removed 94.7% SMX and 91.8% DMP after running 50 d, but also improved total nitrogen removal. In conclusion, these results strongly suggest that biochar, zeolite, vermiculite, peat and sand filled in VFCW can synergistically remove SMX and DMP.


Assuntos
Sulfametoxazol , Zeolitas , Sulfametoxazol/química , Áreas Alagadas , Areia , Solo/química , Sulfanilamida , Adsorção
4.
Carbohydr Polym ; 298: 120059, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241261

RESUMO

Micro/nanoplastic pollution is an emerging concern all over the world as it has a certain impact on the eco-environment and human health. In this study, cellulose/MgAl layered double hydroxides (LDHs) composite beads were prepared for the removal of polystyrene nanoparticles by utilizing the porous properties of cellulose and the unique positive charge of LDHs. The effects of pH, contact time, initial concentration, temperature, humic acid, and ionic strength on the attachment of nanoplastics were studied. The microstructure characteristics of the beads were also analyzed before and after the attachment of nanoplastics. The results indicate that nanoplastic attachment probably involves pore diffusion, hydrogen bonding, and electrostatic interactions. The attachment behavior can be successfully explained using the pseudo-second-order kinetic model (R2 = 0.964), Webber-Morris (intra-particle diffusion) model, and Langmuir isotherm model (R2 = 0.978). The maximum attachment capacity can reach 6.08 mg/g. Therefore, the cellulose/LDHs composite beads can be a promising adsorbent for removing micro/nanoplastics.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Adsorção , Celulose , Substâncias Húmicas , Hidróxidos/química , Cinética , Microplásticos , Poliestirenos , Água , Poluentes Químicos da Água/química , Purificação da Água/métodos , Magnésio , Alumínio
5.
J Hazard Mater ; 426: 127803, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34862104

RESUMO

The advanced oxidation process of peroxymonosulfate activated by solid catalyst is one of the main technologies to solve the pollution of antibiotics in water environment.In this work, a series of composites (MCW) containing Mn, Co, and W were synthesized using green ball milling, which does not produce the three wastes (waste gas, waste water and industrial residue). It shows a unique and high catalytic activity for peroxymonosulfate-based degradation of doxycycline (DC) under the pH condition between 4 and 9, and it can be reused five times. MCW composites remove DC using singlet oxygen and superoxide free radicals, as well as a large number of oxygen vacancies for electron storage. The formation rate of free radicals is determined by the conversion rates of Mn3+/Mn2+ and Co3+/Co2+. In addition, there are three ways to degrade DC to form 18 kinds of intermediates, and the toxicity of all the intermediates were predicted by ECOSAR program. The highly active catalysts obtained using a green synthetic route for the activation of peroxymonosulfate show a great potential for decontamination of antibiotics wastewater.


Assuntos
Doxiciclina , Manganês , Cobalto , Óxidos , Peróxidos , Tungstênio
6.
Bioresour Technol ; 341: 125825, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34481299

RESUMO

The traditional anoxic/aerobic process (A/O) process is widely used for treating digested piggery wastewater, but the lack of carbon sources leads to poor efficiency. Therefore, the process needs optimization to achieve high-efficiency and low-cost operation mode. In this study, an improved A/O system with bionic aquatic weed and Myriophyllum sp. was established to decontaminate digested piggery wastewater. The average removal efficiencies of chemical oxygen demand (COD), NH4+-N, and total nitrogen (TN) by the improved A/O system was satisfactory. The average removal efficiencies of COD, NH4+-N, and TN were 62.1%, 87.5%, and 61.9%, respectively. High-throughput sequencing identified a number of dominant microorganisms. The relative abundance of Nitrosomonas (ammonia-oxidizing bacteria) and Nitrospira (nitrite-oxidizing bacteria) was 0.07%-3.52% and 0.32%-1.30%, respectively. Combining bionic aquatic weed and Myriophyllum sp. altered the microbial community structure and metabolic pathways. The results demonstrate a cost-effective method for treating digested piggery wastewater.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Biônica , Reatores Biológicos , Nitrogênio/análise
7.
J Hazard Mater ; 406: 124697, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33307450

RESUMO

Nanoplastics, a kind of emerging pollutant in natural environments, have now drawn tremendous attention worldwide. Flocculation with Mg/Al-layered double hydroxides (LDH) precursor solutions has showed great potential for removing negatively charged nanoparticles from water. In this study, the flocculation behavior and mechanism for the removal of polystyrene nanoplastics (PSNP) with Mg/Al flocs or Mg/Al LDH were systematically analyzed and investigated. During the process of flocculation, it was observed that in situ Mg/Al LDH can be gradually formed with increasing pH, in addition, PSNP were captured or attached to the surface of LDH with a turning point around pH of 5.0. In acidic solutions with pH < 5.0, the negative surface charges of PSNP were diminished mainly due to the high concentrations of hydrogen ions and the positive charges from Mg and Al ions. In a moderately alkaline solution, Mg and Al ions gradually formed crystals capturing PSNP. Electrostatic adsorption and intermolecular force are the main mechanisms via which PSNP are captured on Mg/Al flocs. Herein, PSNP removal efficiencies from water were more than 90.0%. As the problem of plastic pollution becomes more severe, in situ LDH growth flocculation can provide an efficient way for the removal of PSNP.

8.
Carbohydr Polym ; 251: 117004, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142571

RESUMO

Pennisetum sinese Roxb is a kind of forage with high yield and high quality. However, because only the leaves are used as feed, most straw is discarded or burned, causing pollution and resources waste. In this study, a magnetic cellulose adsorbent produced by extracting cellulose from Pennisetum sinese Roxb straw was used to adsorb antibiotic tetracycline (TC) from water and can be easily separated. The physicochemical properties of the obtained cellulose samples were studied. The adsorption process was mediated by multiple mechanisms including intra-particle diffusion, chemical ion exchange, hydrogen bonding, and electrostatic interaction. We determined the optimal pH, contact time, initial TC concentration, and temperature before investigating the effects of humic acid and ionic strength on the adsorption process. Our results demonstrate that the magnetic cellulose is a promising adsorbent for the removal of TC from water and is worth to be studied further to develop real-world implementation strategies.


Assuntos
Celulose/química , Pennisetum/química , Tetraciclina/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Animais , Antibacterianos/isolamento & purificação , Celulose/ultraestrutura , Humanos , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Cinética , Magnetismo , Microscopia Eletrônica de Varredura , Concentração Osmolar , Termodinâmica , Águas Residuárias/química , Purificação da Água/métodos , Difração de Raios X
9.
Environ Res ; 190: 110014, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768476

RESUMO

Zeolite-Mg/Fe chloride dual enhanced coagulation is a cost-effective method for advanced treatment of swine wastewater, but the sludge generated after the enhanced coagulation remains to be a problem. In this study, the precipitate from a swine wastewater coagulation unit was regenerated by pyrolysis treatment in an O2-limited environment to develop a high efficient adsorbent (biochar-mineral composite, BMC) for the removal of Pb(II) from wastewater. SEM images indicate that complex Mg/Fe oxides and sludge biochar gathered around zeolite particles. Effects of different influencing factors such as Pb(II) initial concentration, pH, adsorption time and ion concentration on the adsorption performance were investigated. The results show that the Langmuir isotherm model can better express the adsorption of Pb(II) on BMC than Freundlich model and Temkin model. BMC pyrolyzed at 500 °C showed the maximum adsorption capacity of 450.58 mg/g under experimental condition of 25 °C, 100 mg/L Pb(II) initial concentration and the initial pH of 5.6. The adsorption mechanisms on BMC mainly include ion exchange, electrostatic interaction. Therefore, it is a cost-effective and environmental-friendly strategy to obtain biochar-mineral composite from recycled sludge, which can efficiently remove Pb(II) from wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Animais , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Minerais , Esgotos , Suínos , Poluentes Químicos da Água/análise
10.
Chemosphere ; 252: 126450, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32222522

RESUMO

Nanoplastics (NPs), which are broken down from large pieces of plastics and caused water environment pollution, are becoming an emerging environmental problem due to their stable structure, high mobility, and easy interactions with ambient organic compounds. Separation of NPs by flocculation may be an effective approach for remediation of NPs contaminated-water. Aluminum ion has been used as a highly efficient flocculant in sewage treatment, and calcium ion also shows excellent sedimentation performance for impurities under high pH conditions. In this study, composite metal calcium-aluminum (Ca/Al) ions were used as flocculants, achieving a settling efficiency of NPs almost as high as 80%. The effects of pH and Ca/Al flocculant ratios on the zeta potentials, solution stability, as well as sedimentation efficiency of NPs were investigated. Results showed that the crystal formation of Ca/Al flocs increased with pH. The contact and adsorption mechanism of NPs by Ca/Al flocs were confirmed by X-ray diffraction, scanning electron microscope, Fourier Transform Infrared Spectrometer, and X-ray photoelectron spectroscopy. The capture of NPs by Ca/Al flocculants could provide a new insight for the treatment of NPs from aqueous environment.


Assuntos
Microplásticos/química , Poluentes Químicos da Água/química , Adsorção , Alumínio/química , Cálcio/química , Floculação , Concentração de Íons de Hidrogênio , Íons , Espectroscopia Fotoeletrônica , Águas Residuárias/química , Água/química , Poluentes Químicos da Água/análise , Difração de Raios X
11.
Chemosphere ; 227: 505-513, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31004817

RESUMO

The existence of Cr(VI) and antibiotics in the environment can form the joint contaminant which can be hazardous to the ecosystem. To deal with this, we have explored a plausible method to remove the Cr(VI) and tetracycline (TC) from water by visible light photocatalysis. In this study, a series of reduced graphene oxide@ZnAlTi layered double oxides (rGO@LDO) composites with different doping ratio of rGO were successfully synthesized, which were applied in photocatalytic reduction of Cr(VI) and oxidation of TC. Graphene acts as an electron donor and it can enhance the adsorption of Cr(VI) and TC on the surface of the composites. It's found that the obtained ZnAlTi-LDO composites doped with rGO have higher photo-responsiveness in the visible region. The best-performing rGO@LDO composite (i.e., CGL3) exhibited enhanced visible light-driven photocatalytic Cr(VI) reduction, which was about five times higher than those of ZnAlTi-LDO (without adding hole catcher). The rGO@LDO also showed a satisfactory performance for photocatalytic oxidation of TC with the total organic carbon removal of 80%. However, the doping of rGO did not significantly enhance the removal of TC. The experiment of pH effects demonstrated that acidic pH was favorable to photocatalytic reduction of Cr(VI), while neutral pH was favorable to photocatalytic oxidation of TC. The band structure of ZnAlTi-LDO was first identified, and the EVB and ECB of ZnAlTi-LDO are -2.32 and 0.72 V (vs. RHE). This research provides a feasible method to remove Cr(VI) and tetracycline from water by employing ZnAlTi-LDO doped with rGO as photocatalyst.


Assuntos
Cromo/isolamento & purificação , Grafite/química , Luz , Óxidos/síntese química , Tetraciclina/isolamento & purificação , Adsorção , Catálise , Concentração de Íons de Hidrogênio , Oxirredução , Óxidos/química , Poluentes Químicos da Água/química , Compostos de Zinco/química
12.
Chemosphere ; 221: 824-833, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30684780

RESUMO

Antibiotics and heavy metals often coexist in polluted environment, and the harm of combined pollution is greater than that of single pollution. In this study, a series of graphene supported p-n heterojunction rGO@Cu2O/BiVO4 composites are synthesized with different Cu2O doping for simultaneous detoxification of Cr(VI) and antibiotics. The obtained photocatalysts (rGO@Cu2O/BiVO4) with proper loading amount of Cu2O shows the a high photocatalytic degradation activity for simultaneously efficient Cr(VI) reduction and sulfamethoxazole (SMZ) oxidation under LED light at neutral pH. The Cr(VI) was completely transformed to Cr(III) rather than simply Cr(VI) adsorbed on the surface of rGO@Cu2O/BiVO4. The photocatalytic activity of composites can be attributed to excellent electrical conductivity of rGO and the p-n heterojunction between Cu2O and BiVO4, which promotes the spatial separation of photogenerated charges at the heterojunction boundary and inhibits of the photogenerated h+ and e- recombination. It's confirmed that h+, O2- and OH are the main reactive species for the photocatalytic SMZ oxidation, and the most important reactive species is h+. Finally, the tentative degradation pathways of SMZ are proposed based on the liquid chromatography-triple quadrupole mass spectrometry analysis. This work provides an effective approach for the treatment of water that contains SMZ and Cr(VI) under LED light.


Assuntos
Bismuto/química , Cromo/química , Cobre/química , Luz , Processos Fotoquímicos , Sulfametoxazol/química , Vanadatos/química , Catálise , Oxirredução , Poluentes Químicos da Água/química
13.
J Environ Manage ; 231: 121-128, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30340131

RESUMO

Emerging pollutants introduced into surface water pose potential hazards to the safety of drinking water. In this study, the removal performance of three emerging compounds (exemplified by caffeine, diclofenac and octylphenol, with different physico-chemical properties) from synthetic water and source water by combining activated carbon (AC) adsorption and nanofiltration (NF) membrane processes was evaluated and analyzed. Results from synthetic water showed that the adsorption isotherms modeled well with the Langmuir equation. The removal performance of target compounds by AC-NF system was more remarkable than that of NF-AC combination. In the source water system, the integrated AC-NF process with coagulation pretreatment (the alum dosage of 60 mg/L) achieved satisfactory performance (the removal efficiencies of three target compounds reached > 95%). Results showed the electrostatic interaction and pollutant hydrophobicity determined the behavior and the fate of selected PPCPs/EDCs during the sequential treatment process of coagulation, activated carbon adsorption, and NF membrane separation. Finally, the AC and NF membranes were analyzed by Fourier transform infrared spectroscopy and scanning electron microscopy to understand the mechanisms, i.e. electrostatic and hydrophobic effects on the total removal process. It suggests that the integrated AC-NF process with coagulation pretreatment should be a feasible approach for removing emerging compounds in waterworks.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Cafeína , Diclofenaco , Fenóis
14.
Carbohydr Polym ; 202: 470-478, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30287025

RESUMO

In order to synthesize adsorbent that can effectively absorb heavy metals in a simple and economical way, this study described the fabrication of adsorbents based on cellulose acetate (CA). CA modified first by polyethyleneimine grafting (CAP) and then by ethylenediamine (CAPE) for enhancing Cu(II) and Pb(II) removal from water. The physico-chemical properties of the modified celluloses were analyzed. It was found that the adsorption functional groups (amino groups) were successfully grafted on cellulose and CAP converted from semi-crystalline to cellulose II after enhancement of ethylenediamine (EDA). Adsorption isotherm results showed that the Cu(II) and Pb(II) removal efficiency by CAPE was significantly higher than that by CAP, and CAP showed a higher adsorption capacity of Cu(II) and Pb(II) than CA, of which the adsorption isotherm modeled with Langmuir isotherms well. The adsorption capacity can significantly be affected by ionic strength and humic acid. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) results demonstrated the complexation between amino groups and Cu(II)/Pb(II) played an important role for adsorption onto CAPE.

15.
PLoS One ; 12(8): e0183617, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832651

RESUMO

Agricultural application of sewage sludge (SS) after carbonization is a plausible way for disposal. Despite its benefits of improving soil fertility and C sequestration, heavy metals contained in sewage sludge biochars (SSB) are still a concern. In this study, two types of heavy metal stabilizers were chosen: fulvic acid (FA) and phosphogypsum (with CaSO4, CS, as the main component). The two stabilizers were incorporated into SS prior to 350°C carbonization for 1 h at the rates of 1%, 2%, or 4%. The obtained SSBs were then analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Total and available concentrations of four heavy metals, i.e., Zn, Pb, Cd, and Ni, in the SSBs were determined. In addition, a series of pot soil culture experiments was conducted to investigate the effects of stabilizers incorporation into SSB on heavy metal bioavailability and the uptake by plants (corn as an indicator) and plant biomass yield, with SS and SSB (no stabilizers) as controls. The results showed that incorporation of both FA and CS increased functional groups such as carboxyl, phenol, hydroxyl, amine and quinine groups in the SSBs. The percentage of heavy metals in sulfuric and oxidizable state and residual state of SSBs were significantly increased after carbonization, and hence the mobility of the heavy metals in SSBs was decreased. The introduction of the stabilizers (i.e., FA or CS) significantly lowered the total and available concentrations of Zn, Pb, Cd, and Ni. The reduction in available heavy metal concentration increased with incorporation rate of the stabilizers from 1% to 4%. In the treatments with FA or CS incorporated SSB, less heavy metals were taken up by plants and more plant biomass yields were obtained. The mitigating effects were more pronounced at higher rates of FA or CS stabilizer. These findings provide a way to lower bioavailability of heavy metals in SS or SSB for land application or horticulture as a peat substitute.


Assuntos
Benzopiranos/química , Sulfato de Cálcio/química , Carvão Vegetal , Metais Pesados/farmacocinética , Fósforo/química , Esgotos , Disponibilidade Biológica , Metais Pesados/química , Espectroscopia Fotoeletrônica , Plantas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
16.
J Colloid Interface Sci ; 495: 68-77, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28189111

RESUMO

Thiourea-dioxide-reduced magnetic graphene oxide (TDMGO) was successfully prepared as an efficient adsorbent for the removal of tetracycline (TC) from aqueous solutions via strong adsorptive interactions. The composite was characterized by SEM, TEM, EDS, TGA, FT-IR, XPS, XRD and VSM. The effects of variables such as the pH, TC concentration, and temperature were successfully analyzed. The kinetics and isothermal parameters were described well by pseudo-second-order and Langmuir isotherm models, respectively, and the maximum adsorption capacity (qm) of TDMGO for TC calculated from the Langmuir isotherm was 1233mg/g at 313K. The removal of TC onto TDMGO, as indicated by the thermodynamic parameters, was spontaneous and endothermic. The removal performance was slightly affected by the solution pH. The presence of NaCl in the solution facilitated TC adsorption, and the optimum adsorption capacity was obtained when the NaCl concentration was >0.001M. The adsorption capacity decreased slightly with increasing humic acid concentration. In addition, the adsorbent could be regenerated and reused. Based on these results, TDMGO is a promising adsorbent for the efficient removal of TC antibiotics from aquatic environments for pollution treatment.

18.
J Hazard Mater ; 318: 396-406, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27450331

RESUMO

The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area.

19.
PLoS One ; 11(7): e0159802, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27448094

RESUMO

To achieve a satisfactory removal efficiency of heavy metal ions from wastewater, silane-functionalized montmorillonite with abundant ligand-binding sites (-NH2) was synthesized as an efficient adsorbent. Ca-montmorillonite (Ca-Mt) was functionalized with 3-aminopropyl triethoxysilane (APTES) to obtain the APTES-Mt products (APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt, APTES4.0CEC-Mt) with enhanced adsorption capacity for Co2+. The physico-chemical properties of the synthesized adsorbents were characterized by spectroscopic and microscopic methods, and the results demonstrated that APTES was successfully intercalated into the gallery of Ca-Mt or grafted onto the surface of Ca-Mt through Si-O bonds. The effect of solution pH, ionic strength, temperature, initial concentrations and contact time on adsorption of Co2+ by APTES-Mt was evaluated. The results indicated that adsorption of Co2+ onto Ca-Mt, APTES1.0CEC-Mt and APTES2.0CEC-Mt can be considered to be a pseudo-second-order process. In contrast, adsorption of Co2+ onto APTES3.0CEC-Mt and APTES4.0CEC-Mt fitted well with the pseudo-first-order kinetics. The adsorption isotherms were described by the Langmuir model, and the maximum adsorption capacities of APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt and APTES4.0CEC-Mt were 25.1, 33.8, 61.6, and 61.9 mg·g-1, respectively. In addition, reaction temperature had no impact on the adsorption capacity, while both the pH and ionic strength significantly affected the adsorption process. A synergistic effect of ion exchange and coordination interactions on adsorption was observed, thereby leading to a significant enhancement of Co2+ adsorption by the composites. Thus, APTES-Mt could be a cost-effective and environmental-friendly adsorbent, with potential for treating Co2+-rich wastewater.

20.
J Environ Manage ; 180: 384-9, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27262033

RESUMO

In this work, three hybrid vertical down-flow constructed wetland (HVDF-CW) systems with different compound substrates were fed with domestic sewage and their pollutants removal performance under different hydraulic loading and step-feeding ratio was investigated. The results showed that the hydraulic loading and step-feeding ratio were two crucial factors determining the removal efficiency of most pollutants, while substrate types only significantly affected the removal of COD and NH4(+)-N. Generally, the lower the hydraulic loading, the better removal efficiency of all contaminants, except for TN. By contrast, the increase of step-feeding ratio would slightly reduce the removal rate of ammonium and TP but obviously promoted the TN removal. Therefore, the optimal operation of this CWs could be achieved with low hydraulic loading combined with 50% of step-feeding ratio when TN removal is the priority, whereas medium or low hydraulic loading without step-feeding would be suitable when TN removal is not taken into consideration. The obtained results in this study can provide us with a guideline for design and optimization of hybrid vertical flow constructed wetland systems to improve the pollutants removal from domestic sewage.


Assuntos
Recuperação e Remediação Ambiental/métodos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Áreas Alagadas , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...