Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 338: 139514, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454982

RESUMO

The microalgae culture in mixing sewage with different characteristics may significantly improve biomass production and nutrients recycling efficiency. In this study, three waste organic wastewater including molasses, alcohol and glycerol wastewater were mixed with anaerobic soybean wastewater as mediums for microalgae culture. The optimal mixture of molasses, alcohol and glycerol wastewater was at an initial carbon-nitrogen ratio of 7:1, 5:1 and 10:1, improving biomass production by 60.4%, 31.3% and 68.7%, respectively. The removal efficiencies of organics, ammonia nitrogen and phosphorus at optimal mixture were 54.8-62.4%, 79.5-99.1% and 49.3-61.5%, and the removal rates increased by 340-630%, 27.5-66.3% and 36.3-70.2% compared to the blank culture. In addition, the culture in mixed wastewater increased lipids contrast by 0.7-1.3 times, while achieving higher saturation in fatty acids. The results suggested that microalgae culture using mixed wastewater was a strategy for high biomass production and nutrients recycling efficiency.


Assuntos
Microalgas , Scenedesmus , Águas Residuárias , Glycine max , Anaerobiose , Biomassa , Glicerol , Nutrientes , Nitrogênio/análise , Fósforo , Biocombustíveis
2.
RSC Adv ; 12(31): 20227-20238, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35919611

RESUMO

Gas hydrate has great application potential in gas separation, energy storage, seawater desalination, etc. However, the intensity of mass and heat transfer is not enough to meet the needs of efficient hydrate synthesis. Nanoparticles, different from other liquid chemical additives, are considered as effective additives to promote hydrate formation due to their rich specific surface area and excellent thermal conductivity. This work summarizes the effect of the nanoparticles on the thermodynamics and kinetics of hydrate formation. And also, this work probes into the mechanism of the effect of the nanoparticles on the formation of hydrate as well as provides some suggestions for future research. It is found that it's difficult for nanoparticles to effectively promote the formation of the gas hydrate without the use of surfactants, because the adhesion characteristics of the nanoparticles make them easily agglomerate or even agglomerate in solution. In addition, at present, the research on the influence of nanoparticles on the formation and decomposition of natural gas hydrate is still very fragmented, and the micro mechanism of the influence is not clear, which requires more systematic and specific research in the future. At the same time, the development of nanoparticles that can promote the formation of natural gas hydrate should also become the focus of future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...