Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38845225

RESUMO

ABSTRACT: Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/ Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.

2.
Adv Healthc Mater ; : e2400886, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824421

RESUMO

Vaccine is the most important way for fighting against infection diseases. However, multiple injections and unsatisfied immune responses are the main obstacles for current vaccine application. Herein, a dynamic covalent hydrogel (DCH) was used as a single-dose vaccine adjuvant for eliciting robust and sustained humoral immunity. By adjusting the mass ratio of the DCH gel, we successfully realized 10 to 30 days constant release of the loaded recombinant protein antigens, and proved that sustained release of antigens could significantly improve the vaccine efficacy. When loading SARS-CoV-2 RBD (Wuhan and Omicron BA.1 strains) antigens into this DCH gel, an over 32,000 times and 8,000 times improvement was observed in antigen-specific antibody titers compared to conventional Aluminum adjuvanted vaccines. The universality of this DCH gel adjuvant was confirmed in a Nipah G antigen test as well as a H1N1 influenza virus antigen test, with much improved protection of C57BL/6 mice against H1N1 virus infection than conventional Aluminum adjuvanted vaccines. This sustainably released, single-dose DCH gel adjuvant provides a new promising option for designing next-generation infection vaccines. This article is protected by copyright. All rights reserved.

3.
J Mater Chem B ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775048

RESUMO

Nanoparticles have been regarded as a promising vaccine adjuvant due to their innate immune potentiation and enhanced antigen transport. However, the inefficient infiltration into the lymph node (LN) paracortex of nanoparticles caused by subcapsular sinus (SCS) obstruction is the main challenge in further improvement of nanovaccine immune efficacy. Herein, we propose to overcome paracortex penetration by using nanovaccine to spontaneously and continuously release antigens after retention in the SCS. In detail, we utilized a spontaneous retro-Diels-Alder (r-D-A) reaction linker to connect poly{(2-methyl-2-oxazoline)80-co-[(2-butyl-2-oxazoline)15-r-(2-thioethyl-2-oxazoline)8]} (PMBOxSH) and peptides for the peptide nanovaccine construction. The r-D-A reaction linker can spontaneously break over time, allowing the nanovaccine to release free antigens and adjuvants upon reaching the LN, thereby facilitating the entry of released antigens and adjuvants into the interior of the LNs. We showed that the efficacy of the peptide nanovaccine constructed using this dynamic linker could be significantly improved, thus greatly enhancing the tumor inhibition efficacy in the B16-OVA model. This dynamic-covalent-chemistry-based vaccine strategy may inspire designing more efficient therapeutic vaccines, especially those that require eliciting high-amount T cell responses.

4.
J Control Release ; 370: 528-542, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705520

RESUMO

Reversing the aggravated immunosuppression hence overgrowth of colorectal cancer (CRC) caused by the gut inflammation and microbiota dysbiosis is pivotal for effective CRC therapy and metastasis inhibition. However, the low delivery efficiency and severe dose-limiting off-target toxicities caused by unsatisfied drug delivery systems remain the major obstacles in precisely modulating gut inflammation and microbiota in CRC therapy. Herein, a multifunctional oral dextran-aspirin nanomedicine (P3C-Asp) was utilized for oral treatment of primary CRC, as it could release salicylic acid (SA) while scavenging reactive oxygen species (ROS) and held great potential in modulating gut microbiota with prebiotic (dextran). Oral P3C-Asp retained in CRC tissues for over 12 h and significantly increased SA accumulation in CRC tissues over free aspirin (10.8-fold at 24 h). The enhanced SA accumulation and ROS scavenging of P3C-Asp cooperatively induced more potent inflammation relief over free aspirin, characterized as lower level of cyclooxygenase-2 and immunosuppressive cytokines. Remarkably, P3C-Asp promoted the microbiota homeostasis and notably increased the relative abundance of strengthening systemic anti-cancer immune response associated microbiota, especially lactobacillus and Akkermansia to 6.66- and 103- fold over the control group. Additionally, a demonstrable reduction in pathogens associated microbiota (among 96% to 79%) including Bacteroides could be detected. In line with our findings, inflammation relief along with enhanced abundance of lactobacillus was positively correlated with CRC inhibition. In primary CRC model, P3C-Asp achieved 2.1-fold tumor suppression rate over free aspirin, with an overall tumor suppression rate of 85%. Moreover, P3C-Asp cooperated with αPD-L1 further reduced the tumor weight of each mouse and extended the median survival of mice by 29 days over αPD-L1 alone. This study unravels the synergistic effect of gut inflammation and microbiota modulation in primary CRC treatment, and unlocks an unconventional route for immune regulation in TME with oral nanomedicine.


Assuntos
Aspirina , Neoplasias Colorretais , Dextranos , Microbioma Gastrointestinal , Homeostase , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Aspirina/administração & dosagem , Aspirina/uso terapêutico , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Homeostase/efeitos dos fármacos , Administração Oral , Dextranos/administração & dosagem , Dextranos/química , Nanomedicina , Camundongos Endogâmicos BALB C , Inflamação/tratamento farmacológico , Masculino , Camundongos , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Nanopartículas/administração & dosagem , Linhagem Celular Tumoral , Feminino
5.
Natl Sci Rev ; 11(3): nwad310, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38312378

RESUMO

Virus-like particle (VLP) vaccines had shown great potential during the COVID-19 pandemic, and was thought to be the next generation of antiviral vaccine technology due to viromimetic structures. However, the time-consuming and complicated processes in establishing a current recombinant-protein-based VLP vaccine has limited its quick launch to the out-bursting pandemic. To simplify and optimize VLP vaccine design, we herein report a kind of viromimetic polymer nanoparticle vaccine (VPNVax), with subunit receptor-binding domain (RBD) proteins conjugated to the surface of polyethylene glycol-b-polylactic acid (PEG-b-PLA) nanoparticles for vaccination against SARS-CoV-2. The preparation of VPNVax based on synthetic polymer particle and chemical post-conjugation makes it possible to rapidly replace the antigens and construct matched vaccines at the emergence of different viruses. Using this modular preparation system, we identified that VPNVax with surface protein coverage of 20%-25% had the best immunostimulatory activity, which could keep high levels of specific antibody titers over 5 months and induce virus neutralizing activity when combined with an aluminum adjuvant. Moreover, the polymer nano-vectors could be armed with more immune-adjuvant functions by loading immunostimulant agents or chemical chirality design. This VPNVax platform provides a novel kind of rapidly producing and efficient vaccine against different variants of SARS-CoV-2 as well as other viral pandemics.

6.
Sci Bull (Beijing) ; 69(7): 922-932, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331707

RESUMO

Neoantigen cancer vaccines have been envisioned as one of the most promising means for cancer therapies. However, identifying neoantigens for tumor types with low tumor mutation burdens continues to limit the effectiveness of neoantigen vaccines. Herein, we proposed a "hit-and-run" vaccine strategy which primes T cells to attack tumor cells decorated with exogenous "neo-antigens". This vaccine strategy utilizes a peptide nanovaccine to elicit antigen-specific T cell responses after tumor-specific decoration with a nanocarrier containing the same peptide antigens. We demonstrated that a poly(2-oxazoline)s (POx) conjugated with OVA257-264 peptide through a matrix metalloprotease 2 (MMP-2) sensitive linker could efficiently and selectively decorate tumor cells with OVA peptides in vivo. Then, a POx-based nanovaccine containing OVA257-264 peptides to elicit OVA-specific T cell responses was designed. In combination with this hit-and-run vaccine system, an effective vaccine therapy was demonstrated across tumor types even without OVA antigen expression. This approach provides a promising and uniform vaccine strategy against tumors with a low tumor mutation burden.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Epitopos , Antígenos de Neoplasias , Neoplasias/terapia , Peptídeos
7.
Transl Stroke Res ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356020

RESUMO

The inflammatory response following subarachnoid hemorrhage (SAH) may lead to Early Brain Injury and subsequently contribute to poor prognosis such as cognitive impairment in patients. Currently, there is a lack of effective strategies for SAH to ameliorate inflammation and improve cognitive impairment in clinical. This study aims to examine the inhibitory impact of remote ischemic post-conditioning (RIPostC) on the body's inflammatory response by regulating Th17/Treg cell homeostasis after SAH. The ultimate goal is to search for potential early treatment targets for SAH. The rat SAH models were made by intravascular puncture of the internal carotid artery. The intervention of RIPostC was administered for three consecutive days immediately after successful modeling. Behavioral experiments including the Morris water maze and Y-maze tests were conducted to assess cognitive functions such as spatial memory, working memory, and learning abilities 2 weeks after successful modeling. The ratio of Th17 cells and Treg cells in the blood was detected using flow cytometry. Immunofluorescence was used to observe the infiltration of neutrophils into the brain. Signal transducers and activators of transcription 5 (STAT5) and signal transducers and activators of transcription 3 (STAT3) phosphorylation levels, receptor-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) levels were detected by Western blot. The levels of anti-inflammatory factors (IL-2, IL-10, IL-5, etc.) and pro-inflammatory factors (IL-6, IL-17, IL-18, TNF-α, IL-14, etc.) in blood were detected using Luminex Liquid Suspension Chip Assay. RIPostC significantly improved the cognitive impairment caused by SAH in rats. The results showed that infiltration of Th17 cells and neutrophils into brain tissue increased after SAH, leading to the release of pro-inflammatory factors (IL-6, IL-17, IL-18, and TNF-α). This response can be inhibited by RIPostC. Additionally, RIPostC facilitates the transfer of Treg from blood to the brain and triggers the release of anti-inflammatory (IL-2, IL-10, and IL-5) factors to suppress the inflammation following SAH. Finally, it was found that RIPostC increased the phosphorylation of STAT5 while decreasing the phosphorylation of STAT3. RIPostC reduces inflammation after SAH by partially balancing Th17/Treg cell homeostasis, which may be related to downregulation of STAT3 and upregulation of STAT5 phosphorylation, which ultimately alleviates cognitive impairment in rats. Targeting Th17/Treg cell homeostasis may be a promising strategy for early SAH treatment.

8.
J Ovarian Res ; 17(1): 14, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216976

RESUMO

BACKGROUND: For women of childbearing age, the biggest problem caused by polycystic ovary syndrome (PCOS) is infertility, which is mainly caused by anovulation, abnormal follicular development, proliferation of small antral follicles, and cystic follicles. The mechanism underlying its occurrence is not clear. The abnormal proliferation and development of follicles in PCOS patients is a complex process, which is affected by many factors. The objective of this study was to investigate the relationship between the Hippo pathway and follicular development in PCOS, and to further explore this relationship by using the YAP inhibitor verteporfin (VP). METHOD: 30 3-week-old BALB/C female rats were randomly divided into control group (n = 10), DHEA group (n = 10) and DHEA + VP group (n = 10). The morphology of ovary and the degree of follicular development were observed by HE staining, and the expression and location of AMH in ovarian follicles were observed by immunofluorescence. The ovarian reserve function index AMH, cell proliferation index PCNA and the ratio of Hippo pathway related proteins MST, LATS, YAP, P-YAP and P-YAP/YAP were detected by Western blot. RESULTS: After dividing 30 3-week-old female mice into control, dehydroepiandrosterone (DHEA; model of PCOS), and DHEA + VP groups, we found that the number of small follicles increased in the DHEA group compared to the control group. Additionally, in the DHEA group compared to the control group, anti-müllerian hormone (AMH; ovarian reserve index) increased, proliferating cell nuclear antigen (PCNA; cell proliferation index) decreased, and upstream (MST and LATS) and downstream (YAP and p-YAP) proteins in the Hippo pathway increased, though the p-YAP/YAP ratio decreased. VP ameliorated the increases in AMH, MST, LATS, YAP and p-YAP, but did not ameliorate the decrease in the p-YAP/YAP ratio. CONCLUSIONS: This study indicates that the increased small follicles in the ovaries and changes in ovarian reserve and cell proliferation may be closely related to Hippo pathway activation. This suggests that the Hippo pathway may be an important pathway affecting the proliferation and development of follicles and the occurrence of PCOS.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Camundongos , Síndrome do Ovário Policístico/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Via de Sinalização Hippo , Camundongos Endogâmicos BALB C , Hormônio Antimülleriano/metabolismo , Desidroepiandrosterona/farmacologia
9.
ACS Nano ; 18(4): 3087-3100, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235966

RESUMO

Breast cancer is the most commonly diagnosed cancer, and surgical resection is the first choice for its treatment. With the development of operation techniques, surgical treatment for breast cancer is evolving toward minimally invasive and breast-conserving approaches. However, breast-conserving surgery is prone to an increased risk of cancer recurrence and is becoming a key challenge that needs to be solved. In this study, we introduce a one-shot injectable nano-in-gel vaccine (NIGel-Vax) for postoperative breast cancer therapy. The NIGel-Vax was constructed by mixing protein antigens with PEI-4BImi-Man adjuvant and then encapsulated in a hydrogel made with oxidized dextran (ODEX) and 4-arm PEG-ONH2. Using 4T1 tumor-extracted proteins as antigen, the NIGel-Vax achieved a 92% tumor suppression rate and a 33% cure rate as a postoperative therapy in the 4T1 tumor model. Using the tumor-associated antigen trophoblast cell-surface antigen 2 (TROP2) protein as the antigen, NIGel-Vax achieved a 96% tumor suppression rate and a 50% cure rate in triple-negative breast cancer (TNBC) models. This design provides an encouraging approach for breast cancer postoperative management.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Vacinas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/cirurgia , Nanovacinas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Mastectomia Segmentar , Hidrogéis/uso terapêutico , Linhagem Celular Tumoral
10.
Int Immunopharmacol ; 125(Pt A): 111141, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918087

RESUMO

Hyperandrogenemia and persistent chronic inflammation, two main striking features of polycystic ovary syndrome (PCOS), have been proven involved in follicular dysgenesis in PCOS. However, the association between hyperandrogenism and inflammation activation in PCOS is not fully understood. Excess testosterone(T) induces inflammation and pyroptosis activation in a mouse model of PCOS, leading to ovarian dysfunction and fibrosis. Excessive endoplasmic reticulum (ER) stress is present in ovarian granulosa cells (GCs), testosterone-induced PCOS mouse and cellular models. This study found higher levels of interleukin (IL)-1ß, IL-8, IL-17, and IL-18 in the follicular fluid of PCOS patients with hyperandrogenemia undergoing IVF treatment. In addition, pyroptosis in GCs was demonstrated, which was significantly elevated in PCOS patients. To clarify the association of hyperandrogenism, inflammation, and pyroptosis activation in PCOS, dehydroepiandrosterone(DHEA)-treated mouse PCOS model and T-treated KGN cell line were explored for PCOS mechanism. Markers of inflammatory activation and pyroptosis were significantly increased after DHEA treatment in mice and T treatment in KGN cells. In addition, ER stress sensor proteins were increased simultaneously. However, suppression of inflammation by genipin(GP) led to decreased pyroptosis in KGN cells but no variation in ER stress sensor proteins. In contrast, when treated with tauroursodeoxycholic acid(TUDCA) to attenuate ER stress, the markers of inflammatory factors were significantly reduced, accompanied by a reduction in pyroptosis. Our results suggest that persistent hyperandrogenemia of PCOS promotes local inflammatory activation of the ovary, and the imbalanced inflammatory microenvironment leads to pyroptosis of GCs, which is mediated by ER stress activation.


Assuntos
Hiperandrogenismo , Síndrome do Ovário Policístico , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Piroptose , Testosterona , Inflamação , Desidroepiandrosterona , Microambiente Tumoral
11.
Opt Express ; 31(9): 14149-14158, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157285

RESUMO

Quantum metrology promises a great enhancement in measurement precision that beyond the possibilities of classical physics. We demonstrate a Hong-Ou-Mandel sensor that acts as a photonic frequency inclinometer for ultrasensitive tilt angle measurement within a wide range of tasks, ranging from the determination of mechanical tilt angles, the tracking of rotation/tilt dynamics of light-sensitive biological and chemical materials, or in enhancing the performance of optical gyroscope. The estimation theory shows that both a wider single-photon frequency bandwidth and a larger difference frequency of color-entangled states can increase its achievable resolution and sensitivity. Building on the Fisher information analysis, the photonic frequency inclinometer can adaptively determine the optimum sensing point even in the presence of experimental nonidealities.

12.
ACS Biomater Sci Eng ; 9(7): 4108-4116, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-35653749

RESUMO

OX40 (CD134, TNFRSF4) is a member of the tumor necrosis factor receptor superfamily that can be activated by its cognate ligand OX40L (CD252, TNFSF4) and functions as a pair of T cell costimulatory molecules. The interaction between OX40 and OX40L (OX40/OX40L) plays a critical role in regulating antitumor immunity, including promoting effector T cells expansion and survival, blocking natural regulatory T cells (Treg) activity, and antagonizing inducible Treg generation. However, current OX40 agonists including anti-OX40 monoclonal antibodies (aOX40) have serious side effects after systemic administration, which limits their clinical success and application. Herein, we propose a strategy to reprogram tumor cells into OX40L-expressing "artificial" antigen-presenting cells (APCs) by OX40L plasmid-loaded nanoparticles for boosting antitumor immunity in situ. A novel gene transfection carrier was prepared by a modular hierarchical assembly method, which could efficiently transfect various tumor cells and express OX40L proteins on their surface. These surface-decorated OX40L proteins were proved to stimulate T cell proliferation in vitro while stimulating strong antitumor immune responses in vivo. Importantly, this in situ reprogramming strategy did not induce any toxicity as observed in aOX40 treatment, thus providing a novel method for immune checkpoint stimulator application.


Assuntos
Neoplasias , Ligante OX40 , Humanos , Ligante OX40/genética , Ligante OX40/metabolismo , Linfócitos T Reguladores/metabolismo , Ativação Linfocitária , Neoplasias/tratamento farmacológico
13.
Biomaterials ; 284: 121489, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364489

RESUMO

Using nanotechnology for cancer vaccine design holds great promise because of the intrinsic feature of nanoparticles in being captured by antigen-presenting cells (APCs). However, there are still obstacles in current nanovaccine systems in achieving efficient tumor therapeutic effects, which could partially be attributed to the unsatisfactory vaccine carrier design. Herein, we report a mannan-decorated pathogen-like polymeric nanoparticle as a protein vaccine carrier for eliciting robust anticancer immunity. This nanovaccine was constructed as a core-shell structure with mannan as the shell, polylactic acid-polyethylenimine (PLA-PEI) assembled nanoparticle as the core, and protein antigens and Toll-like receptor 9 (TLR9) agonist CpG absorbed onto the PLA-PEI core via electrostatic interactions. Compared to other hydrophilic materials, mannan decoration could greatly enhance the lymph node draining ability of the nanovaccine and promote the capturing by the CD8+ dendritic cells (DCs) in the lymph node, while PLA-PEI as the inner core could enhance antigen endosome escape thus promoting the antigen cross-presentation. In addition, mannan itself as a TLR4 agonist could synergize with CpG for maximally activating the DCs. Excitingly, we observed in several murine tumor models that using this nanovaccine alone could elicit robust immune response in vivo and result in superior anti-tumor effects with 50% of mice completely cured. This study strongly evidenced that mannan decoration and a rationally designed nanovaccine system could be quite robust in tumor vaccine therapy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Adjuvantes Imunológicos/química , Animais , Células Dendríticas , Imunoterapia , Mananas , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Neoplasias/tratamento farmacológico , Poliésteres/uso terapêutico , Polímeros/uso terapêutico
14.
Adv Mater ; 34(10): e2109254, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34984753

RESUMO

In recent years, significant evolutions have been made in applying nanotechnologies for prophylactic and therapeutic cancer vaccine design. However, the clinical translation of nanovaccines is still limited owing to their complicated compositions and difficulties in the spatiotemporal coordination of antigen-presenting cell activation and antigen cross-presentation. Herein, a minimalist binary nanovaccine (BiVax) is designed that integrates innate stimulating activity into the carrier to elicit robust antitumor immunity. The authors started by making a series of azole molecules end-capped polyethylenimine (PEI-M), and were surprised to find that over 60% of the PEI-M polymers have innate stimulating activity via activation of the stimulator of interferon genes pathway. PEI-4BImi, a PEI-M obtained from a series of polymers, elicits robust antitumor immune responses when used as a subcutaneously injected nanovaccine by simply mixing with ovalbumin antigens, and this BiVax system performs much better than the traditional ternary vaccine system, as well as, commercialized aluminum-containing adjuvants. This system also enables the fast preparation of personalized BiVax by compositing PEI-4BImi with autologous tumor cell membrane protein antigens, and a 60% postoperative cure rate is observed when combined with immune checkpoint inhibitors.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Animais , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia
15.
Adv Healthc Mater ; 10(20): e2100862, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34347370

RESUMO

Surgery remains the most preferred treatment options for colorectal cancer (CRC). Paradoxically, local recurrence and distant metastasis are usually accelerated postsurgery as a consequence of local and systemic immunosuppression caused by surgery. Therefore, modulating tumor postoperative immune microenvironment and activating systemic antitumor immunity are necessary supplementaries for CRC therapy. Here, an in-situ-sprayed immunotherapeutic gel loaded with anti-OX40 antibody (iSGels@aOX40) is reported for CRC postsurgical treatment. The iSGel is formed instantly after spraying with strong adhesion ability via crosslinking between tannic acid (TA) and poly(l-glutamic acid)-g-methoxy poly(ethylene glycol)/phenyl boronic acid (PLG-g-mPEG/PBA). TA not only serves as one component of the iSGel but also relieves the postsurgical immunosuppressive microenvironment by inhibiting the activity of cyclo-oxygenase-2 (COX-2). The aOX40 serves as an immune agonistic antibody and is released from the iSGel in a constant manner lasting for over 20 days. In a subcutaneous murine CRC model, the iSGels@aOX40 results in complete inhibition on tumor recurrence. In addition, the cured mice show resistance to tumor re-challenge, suggesting that immune memory effects are established after the iSGels@aOX40 treatment. In an orthotopic CRC peritoneal metastatic model, the iSGels@aOX40 also remarkably inhibits the growth of the abdominal metastatic tumors, suggesting great potential for clinical CRC therapy.


Assuntos
Neoplasias Colorretais , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Imunoterapia , Camundongos
16.
Adv Mater ; 33(7): e2007293, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33448050

RESUMO

Using nanotechnology for improving the immunotherapy efficiency represents a major research interest in recent years. However, there are paradoxes and obstacles in using a single nanoparticle to fulfill all the requirements in the complicated immune activation processes. Herein, a supramolecular assembled programmable immune activation nanomedicine (PIAN) for sequentially finishing multiple steps after intravenous injection and eliciting robust antitumor immunity in situ is reported. The programmable nanomedicine is constructed by supramolecular assembly via host-guest interactions between poly-[(N-2-hydroxyethyl)-aspartamide]-Pt(IV)/ß-cyclodextrin (PPCD), CpG/polyamidoamine-thioketal-adamantane (CpG/PAMAM-TK-Ad), and methoxy poly(ethylene glycol)-thioketal-adamantane (mPEG-TK-Ad). After intravenous injection and accumulation at the tumor site, the high level of reactive oxygen species in the tumor microenvironment promotes PIAN dissociation and the release of PPCD (mediating tumor cell killing and antigen release) and CpG/PAMAM (mediating antigen capturing and transferring to the tumor-draining lymph nodes). This results in antigen-presenting cell activation, antigen presentation, and robust antitumor immune responses. In combination with anti-PD-L1 antibody, the PIAN cures 40% of mice in a colorectal cancer model. This PIAN provides a new framework for designing programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Vacinas Anticâncer/química , Neoplasias Colorretais/imunologia , Dendrímeros/química , Animais , Células Apresentadoras de Antígenos , Antineoplásicos/farmacologia , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Interleucina-6/metabolismo , Camundongos , Neoplasias Experimentais , Polietilenoglicóis/química , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo , beta-Ciclodextrinas/farmacologia
17.
Biomaterials ; 268: 120542, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249316

RESUMO

STING (stimulator of interferon genes) signaling pathway has attracted considerable attention in cancer immunotherapy due to its capacity to boost vigorous antitumor immunity. However, the shortage of effective STING agonists limits the promotion of STING pathway in cancer treatment. Herein, we present an approach for in situ activation of STING pathway with nanoparticles delivered DNA-targeting chemo agents, based on the understanding that cytosol DNA is a pre-requisite for STING pathway activation. Through in vitro screening among several DNA-targeting chemo agents, we identified 7-ethyl-10-hydroxycamptothecin (SN38) as the most potent drug for stimulating interferon (IFN)-ß secretion and proved that this process is mediated by the passage of DNA-containing exosomes from treated tumor cells to bone marrow-derived dendritic cells (BMDCs) and subsequent activation of the STING pathway. Furthermore, we designed a polymeric-SN38 conjugate that could self-assemble into nanoparticles (SN38-NPs) for in vivo application. The SN38-NPs formulation reduced toxicity of free SN38, effectively stimulated the activation of STING pathway in E0771 tumors, and resulted in a tumor suppression rate (TSR%) of 82.6%. Our results revealed a new mechanism of SN38 in cancer treatment and should inspire using more DNA-targeting agents, especially in nanoformulation, for activating STING pathway and cancer chemoimmunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Imunoterapia , Irinotecano , Neoplasias/tratamento farmacológico , Polímeros
18.
Genome Biol ; 21(1): 288, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256812

RESUMO

BACKGROUND: Adenosine-to-inosine (A-to-I) RNA editing plays important roles in diversifying the transcriptome and preventing MDA5 sensing of endogenous dsRNA as nonself. To date, few studies have investigated the population genomic signatures of A-to-I editing due to the lack of editing sites overlapping with SNPs. RESULTS: In this study, we applied a pipeline to robustly identify SNP editing sites from population transcriptomic data and combined functional genomics, GWAS, and population genomics approaches to study the function and evolution of A-to-I editing. We find that the G allele, which is equivalent to edited I, is overrepresented in editing SNPs. Functionally, A/G editing SNPs are highly enriched in GWAS signals of autoimmune and immune-related diseases. Evolutionarily, derived allele frequency distributions of A/G editing SNPs for both A and G alleles as the ancestral alleles are skewed toward intermediate frequency alleles relative to neutral SNPs, a hallmark of balancing selection, suggesting that both A and G alleles are functionally important. The signal of balancing selection is confirmed by a number of additional population genomic analyses. CONCLUSIONS: We uncovered a hidden layer of A-to-I RNA editing SNP loci as a common target of balancing selection, and we propose that the maintenance of such editing SNP variations may be at least partially due to constraints on the resolution of the balance between immune activity and self-tolerance.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Edição de RNA , Adenosina/metabolismo , Adenosina Desaminase , Alelos , Frequência do Gene , Genômica , Humanos , Inosina/metabolismo , RNA de Cadeia Dupla , Transcriptoma
19.
Front Chem ; 8: 380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528926

RESUMO

Functional materials and nanostructures have been widely used for enhancing the therapeutic potency and safety of current cancer immunotherapy. While profound nanostructures have been developed to participate in the development of cancer immunotherapy, the construction of intricate nanostructures with easy fabrication and functionalization properties to satisfy the diversified requirements in cancer immunotherapy are highly required. Hierarchical self-assembly using supramolecular interactions to manufacture organized architectures at multiple length scales represents an interesting and promising avenue for sophisticated nanostructure construction. In this mini-review, we will outline the recent progress made in the development of supramolecular self-assembled nanostructures for cancer immunotherapy, with special focus on the supramolecular interactions including supramolecular peptide assembly, supramolecular DNA assembly, lipid hydrophobic assembly, host-guest assembly, and biomolecular recognition assembly.

20.
ACS Biomater Sci Eng ; 6(9): 5281-5289, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455277

RESUMO

Peritoneal seeding represents one of the most frequent sites of metastasis for late-stage gastrointestinal and gynecological cancer. At present, the major treatment method for peritoneal metastatic carcinoma (PMC) is the combination of cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC). Nevertheless, the 5 year survival rate of patients after these treatments is still far from satisfactory. Here, we report a biodegradable implant co-loaded with doxorubicin (DOX) and anti-PD-1 monoclonal antibody (aPD-1) (BI@DOX+aPD-1) for a combination of immunogenic chemotherapy and immune checkpoint therapy for PMC postoperative treatment. The bio-implant is fabricated with oxidized dextran (ODEX) and 4-arm poly(ethylene glycol) amine (4-arm PEG-NH2) by Schiff's base reaction at mild conditions, with DOX and aPD-1 loaded inside during and after the fabrication process, respectively. In vitro studies confirmed the slow and sustained release of DOX and aPD-1 from the bio-implants. In vivo studies showed that the bio-implants could be gradually degraded and maintain relatively high concentrations of therapeutic agents in the mouse abdomen. In a murine CT26 PMC model, the BI@DOX+aPD-1 resulted in a 89.7% tumor-suppression rate after peritoneal implantation. Importantly, the combination therapy of DOX and aPD-1 in the bio-implant showed an excellent synergistic effect with a Q value of 2.35. This easy-fabricated bio-implant combined with DOX and aPD-1 should be promising for clinical PMC postoperative treatment.


Assuntos
Carcinoma , Hipertermia Induzida , Neoplasias Peritoneais , Implantes Absorvíveis , Animais , Carcinoma/terapia , Procedimentos Cirúrgicos de Citorredução , Humanos , Camundongos , Neoplasias Peritoneais/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...