Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(6): 1831-1841, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38863339

RESUMO

Antimicrobial resistance poses a significant global challenge, demanding innovative approaches, such as the CRISPR-Cas-mediated resistance plasmid or gene-curing system, to effectively combat this urgent crisis. To enable successful curing of antimicrobial genes or plasmids through CRISPR-Cas technology, the development of an efficient broad-host-range delivery system is paramount. In this study, we have successfully designed and constructed a novel functional gene delivery plasmid, pQ-mini, utilizing the backbone of a broad-host-range Inc.Q plasmid. Moreover, we have integrated the CRISPR-Cas12f system into the pQ-mini plasmid to enable gene-curing in broad-host of bacteria. Our findings demonstrate that pQ-mini facilitates the highly efficient transfer of genetic elements to diverse bacteria, particularly in various species in the order of Enterobacterales, exhibiting a broader host range and superior conjugation efficiency compared to the commonly used pMB1-like plasmid. Notably, pQ-mini effectively delivers the CRISPR-Cas12f system to antimicrobial-resistant strains, resulting in remarkable curing efficiencies for plasmid-borne mcr-1 or blaKPC genes that are comparable to those achieved by the previously reported pCasCure system. In conclusion, our study successfully establishes and optimizes pQ-mini as a broad-host-range functional gene delivery vector. Furthermore, in combination with the CRISPR-Cas system, pQ-mini demonstrates its potential for broad-host delivery, highlighting its promising role as a novel antimicrobial tool against the growing threat of antimicrobial resistance.


Assuntos
Antibacterianos , Sistemas CRISPR-Cas , Bactérias Gram-Negativas , Plasmídeos , Sistemas CRISPR-Cas/genética , Plasmídeos/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Técnicas de Transferência de Genes , Edição de Genes/métodos
2.
Bioorg Chem ; 87: 728-735, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30954837

RESUMO

Lithocarols A-F (1-6) possessing novel highly-oxygenated isobenzofuran core, together with a related known compound isoprenylisobenzofuran A (7) were isolated from the marine-derived fungus Phomopsis lithocarpus FS508. Among them, lithocarols A-E (1-5) represent the first examples of poly-ketal derivatives in tenellone family. The structures for all these compounds were fully elucidated by spectroscopic analysis, X-ray diffraction, and electronic circular dichroism calculations. Their cytotoxic assay disclosed that compounds 1-4 displayed moderate growth inhibitory effect against four human tumor cell lines with the IC50 values ranging from 10.5 to 38.7 µM.


Assuntos
Antineoplásicos/farmacologia , Ascomicetos/química , Benzofuranos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Benzofuranos/química , Benzofuranos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
3.
Biomolecules ; 10(1)2019 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905743

RESUMO

Gliotoxin is an important epipolythiodioxopiperazine, which was biosynthesized by the gli gene cluster in Aspergillus genus. However, the regulatory mechanism of gliotoxin biosynthesis remains unclear. In this study, a novel Zn2Cys6 transcription factor DcGliZ that is responsible for the regulation of gliotoxin biosynthesis from the deep-sea-derived fungus Dichotomomyces cejpii was identified. DcGliZ was expressed in Escherichia coli and effectively purified from inclusion bodies by refolding. Using electrophoretic mobility shift assay, we demonstrated that purified DcGliZ can bind to gliG, gliM, and gliN promoter regions in the gli cluster. Furthermore, the binding kinetics and affinity of DcGliZ protein with different promoters were measured by surface plasmon resonance assays, and the results demonstrated the significant interaction of DcGliZ with the gliG, gliM, and gliN promoters. These new findings would lay the foundation for the elucidation of future gliotoxin biosynthetic regulation mechanisms in D. cejpii.


Assuntos
Fungos/genética , Gliotoxina/biossíntese , Família Multigênica/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fungos/metabolismo , Gliotoxina/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-32039165

RESUMO

Epothilones are a kind of macrolides with strong cytotoxicity toward cancer cells and relatively lower side effects compared with taxol. Epothilone B derivate ixabepilone has been used for the clinical treatment of advanced breast cancer. However, the low yield of epothilones and the difficulty in the genetic manipulation of Sorangium cellulosum limited their wider application. Transcription activator-like effectors-Trancriptional factor (TALE-TF)-VP64 and clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-VP64 have been demonstrated as effective systems for the transcriptional improvement. In this study, a promoter for the epothilone biosynthesis cluster was obtained and the function has been verified. The TALE-TF-VP64 and CRISPR/dcas9-VP64 target P3 promoter were electroporated into S. cellulosum strain So ce M4, and the transcriptional levels of epothilone biosynthesis-related genes were significantly upregulated. The yield of epothilone B was improved by 2.89- and 1.53-fold by the introduction of recombinant TALE-TF-VP64-P3 and dCas9-VP64-P3 elements into So ce M4, respectively. The epothilone D yield was also improved by 1.12- and 2.18-fold in recombinant dCas9-So ce M4 and TALE-VP64 strains, respectively. The transcriptional regulation mechanism of TALE-TF-VP64 and the competition mechanism with endogenous transcriptional factor were investigated by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP), demonstrating the combination of the P3 promoter and TALE-TF element and the competition between TALE-TF and endogenous transcriptional protein. This is the first report on the transcriptional regulation of the epothilone biosynthetic gene cluster in S. cellulosum using the TALE-TF and dCas9-VP64 systems, and the regulatory mechanism of the TALE-TF system for epothilone biosynthesis in S. cellulosum was also firstly revealed, thus shedding light on the metabolic engineering of S. cellulosum to improve epothilone yields substantially and promoting the application of epothilones in the biomedical industry.

5.
Mar Drugs ; 16(9)2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208615

RESUMO

Five new benzophenone derivatives named tenellones D⁻H (1⁻5), sharing a rare naturally occurring aldehyde functionality in this family, and a new eremophilane derivative named lithocarin A (7), together with two known compounds (6 and 8), were isolated from the deep marine sediment-derived fungus Phomopsis lithocarpus FS508. All of the structures for these new compounds were fully characterized and established on the basis of extensive spectroscopic interpretation and X-ray crystallographic analysis. Compound 5 exhibited cytotoxic activity against HepG-2 and A549 cell lines with IC50 values of 16.0 and 17.6 µM, respectively.


Assuntos
Aldeídos/farmacologia , Antineoplásicos/farmacologia , Organismos Aquáticos/química , Ascomicetos/química , Benzofenonas/farmacologia , Células A549 , Aldeídos/química , Aldeídos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Benzofenonas/química , Benzofenonas/isolamento & purificação , Cristalografia por Raios X , Sedimentos Geológicos/química , Células Hep G2 , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Oceanos e Mares
6.
Int J Mol Sci ; 19(7)2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29966253

RESUMO

Gliotoxin, produced by fungi, is an epipolythiodioxopiperazine (ETP) toxin with bioactivities such as anti-liver fibrosis, antitumor, antifungus, antivirus, antioxidation, and immunoregulation. Recently, cytotoxic gliotoxins were isolated from a deep-sea-derived fungus, Dichotomomyces cejpii. However, the biosynthetic pathway for gliotoxins in D. cejpii remains unclear. In this study, the transcriptome of D. cejpii was sequenced using an Illumina Hiseq 2000. A total of 19,125 unigenes for D. cejpii were obtained from 9.73 GB of clean reads. Ten genes related to gliotoxin biosynthesis were annotated. The expression levels of gliotoxin-related genes were detected through quantitative real-time polymerase chain reaction (qRT-PCR). The GliG gene, encoding a glutathione S-transferase (DC-GST); GliI, encoding an aminotransferase (DC-AI); and GliO, encoding an aldehyde reductase (DC-AR), were cloned and expressed, purified, and characterized. The results suggested the important roles of DC-GST, DC-AT, and DC-AR in the biosynthesis of gliotoxins. Our study on the genes related to gliotoxin biosynthesis establishes a molecular foundation for the wider application of gliotoxins from D. cejpii in the biomedical industry in the future.


Assuntos
Fungos/genética , Gliotoxina/biossíntese , Transcriptoma/genética , Aldeído Redutase/genética , Fungos/metabolismo , Perfilação da Expressão Gênica/métodos , Glutationa Transferase/genética
7.
Proteomics ; 18(20): e1800023, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30035352

RESUMO

Agarwood is a precious traditional Chinese medicine with a variety of pharmacological effects. Although efforts have been made in elucidating the mechanism of agarwood formation, little progress is obtained till now. Therefore, the molecular mechanism of agarwood formation needs to be further explored using different biological approaches. In this study, the quantitative proteomic analysis using iTRAQ technology combined with transcriptomic and metabolomic analyses on chemically induced Aquilaria sinensis is performed to elucidate the agarwood formation mechanism by formic acid stimulus. Data are available via ProteomeXchange with identifier PXD007586; 1884 proteins are detected, 504 differential proteins that show at least twofold differences in their expression levels are selected based on GO annotations, KEGG, STRING analysis, and quantitative RT-PCR analysis. The results indicate that sesquiterpene synthase, germin-like protein, pathogenesis-related protein, 6-phosphogluconate dehydrogenase, lipoyl synthase, and superoxide dismutase play important roles in the agarwood formation, suggesting that the proteins related to the plant defensive response, the removal of peroxide, the disease-resistance, the biosythesis of glycan, fatty acids, and sesquiterpene are crucial for agarwood formation.


Assuntos
Formiatos/farmacologia , Metaboloma , Proteínas de Plantas/análise , Proteoma , Thymelaeaceae/metabolismo , Transcriptoma , Madeira/metabolismo , Regulação da Expressão Gênica de Plantas , Thymelaeaceae/efeitos dos fármacos , Thymelaeaceae/genética , Thymelaeaceae/crescimento & desenvolvimento , Madeira/química
8.
Int J Mol Sci ; 18(3)2017 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-28245611

RESUMO

Myrothecium roridum is a plant pathogenic fungus that infects different crops and decreases the yield of economical crops, including soybean, cotton, corn, pepper, and tomato. Until now, the pathogenic mechanism of M. roridum has remained unclear. Different types of trichothecene mycotoxins were isolated from M. roridum, and trichothecene was considered as a plant pathogenic factor of M. roridum. In this study, the transcriptome of M. roridum in different incubation durations was sequenced using an Illumina Hiseq 2000. A total of 35,485 transcripts and 25,996 unigenes for M. roridum were obtained from 8.0 Gb clean reads. The protein-protein network of the M. roridum transcriptome indicated that the mitogen-activated protein kinases signal pathway also played an important role in the pathogenicity of M. roridum. The genes related to trichothecene biosynthesis were annotated. The expression levels of these genes were also predicted and validated through quantitative real-time polymerase chain reaction. Tri5 gene encoding trichodiene synthase was cloned and expressed, and the purified trichodiene synthase was able to catalyze farnesyl pyrophosphate into different kinds of sesquiterpenoids.Tri4 and Tri11 genes were expressed in Escherichia coli, and their corresponding enzymatic properties were characterized. The phylogenetic tree of trichodiene synthase showed a great discrepancy between the trichodiene synthase from M. roridum and other species. Our study on the genes related to trichothecene biosynthesis establishes a foundation for the M. roridum hazard prevention, thus improving the yields of economical crops.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Micotoxinas/biossíntese , Transcriptoma , Tricotecenos/biossíntese , Vias Biossintéticas , Catálise , Biologia Computacional/métodos , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Anotação de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transdução de Sinais
9.
Front Microbiol ; 7: 1067, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462304

RESUMO

Bioethanol is becoming increasingly important in energy supply and economic development. However, the low yield of bioethanol and the insufficiency of high-efficient genetic manipulation approaches limit its application. In this study, a novel transcription activator-like effector nuclease (TALEN) vector containing the left and right arms of TALEN was electroporated into Saccharomyces cerevisiae strain As2.4 to sequence the alcohol dehydrogenase gene ADH2 and the hygromycin-resistant gene hyg. Western blot analysis using anti-FLAG monoclonal antibody proved the successful expression of TALE proteins in As2.4 strains. qPCR and sequencing demonstrated the accurate knockout of the 17 bp target gene with 80% efficiency. The TALEN vector and ADH2 PCR product were electroporated into ΔADH2 to complement the ADH2 gene (ADH2 (+) As2.4). LC-MS and GC were employed to detect ethanol yields in the native As2.4, ΔADH2 As2.4, and ADH2 (+) As2.4 strains. Results showed that ethanol production was improved by 52.4 ± 5.3% through the disruption of ADH2 in As2.4. The bioethanol yield of ADH2 (+) As2.4 was nearly the same as that of native As2.4. This study is the first to report on the disruption of a target gene in S. cerevisiae by employing Fast TALEN technology to improve bioethanol yield. This work provides a novel approach for the disruption of a target gene in S. cerevisiae with high efficiency and specificity, thereby promoting the improvement of bioethanol production in S. cerevisiae by metabolic engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...