Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119099, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33214102

RESUMO

A novel Type-I Mn: ZnSe@ZnS core-shell quantum dots (QDs) was reported through a two-step procedure by using low-cost inorganic salts and naturalbiomacromolecule as raw materials. Based on a designed structure of L-cysteine-capped Mn: ZnSe QDs in aqueous media with the controllable surface, Mn: ZnSe@ZnS core-shell QDs were formed due to photoactive ions and defect curing under continuous constant light. The influences of experimental variables, including synthesis conditions of Mn: ZnSe QDs, different types and affecting factors of photo irradiation had been systematically investigated. Under the effect of photoinduced fluorescence enhancement, the photoluminescence (PL) intensity increases significantly by about 5-10 times after 1-3 h of UV irradiation. The position of the fluorescence peak was red-shifted by about 17 nm, emitting orange-red fluorescence. The photoluminescence quantum yield (PL QY) was markedly improved (up to 35%). The structure and morphology of Mn: ZnSe@ZnS core-shell QDs were also confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS) in detail. The mechanism of photoinduced fluorescence enhancement was attributed to L-cysteine allowed to release S2- to form a ZnS shell, and the passivated surface non-radiative relaxation centers of Mn: ZnSe@ZnS QDs was successfully synthesized with highuniform size, excellent photoluminescence performance, and good stability, all ofwhichmakethemgood potential candidates for white LEDs, and biological labels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...