Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 303: 120456, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657861

RESUMO

As one of the most important biopolymers, starch has been applied to replace petroleum-derived polymers for "green" materials. Discovery of novel solvents and understanding of the solvent effects are critical challenges for the destruction of strong hydrogen bonds of starch molecules for manufacturing bio-based materials. Herein, two ionic liquids (ILs), 1-ethyl-3-methyl-imidazolium mesylate ([Emim][MS]) and 1-ethyl-3-methyl-imidazolium tartrate ([Emim][Tar]), were explored as novel solvents for starch. Their effects on phase transition behaviors, microstructure, hydrogen-bond interaction, crystalline structure, micromorphology and thermal stability of corn starch were compared systematically. With the IL/H2O ratio increasing, the starch/IL/H2O mixtures underwent endothermic, exothermic/endothermic and exothermic processes, sequentially. However, the starch properties were very different in two ILs-water systems, which were closely related to the solvent composition and IL structure. These differences were further explained by the interactions among starch, water and the two ILs on the basis of the quantum chemical calculations. It was found that [Emim][MS] had a stronger interaction with water than starch, whereas [Emim][Tar] preferred to bind with starch. This study not only provided experimental supports for understanding the starch behaviors in novel "green" solvents, but also laid the theoretical foundation for starch modification and industrial applications of starch-based materials in more appropriate solvents.

2.
Int J Biol Macromol ; 213: 791-803, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35679959

RESUMO

Flexible wearable sensors based on conductive hydrogels are attracting increasing interest. To meet the urgent demands of sustainability and eco-friendliness, biopolymer-based physically crosslinked hydrogels have drawn great attention. Starch has a great potential due to its renewability, biocompatibility, nontoxicity and low cost. However, poor mechanical property, low conductivity and lack of versatility are seriously limiting the applications of starch-based hydrogels in wearable sensors. Moreover, the development of starch hydrogel-based wearable sensors in harsh conditions remains a challenge. Herein, multifunctional and physical crosslinking hydrogels were developed by introducing ionic liquid (1-ethyl-3-methyl imidazolium acetate) and metal salt (AlCl3) into starch/polyvinyl alcohol double-network structure. The hydrogel exhibited excellent stretchability (567%), tensile strength (0.53 MPa), high conductivity (2.75 S·m-1), good anti-freezing, antibacterial and anti-swelling properties. A wearable sensor assembled from the starch-based hydrogel exhibited a wide working range, high sensitivity (gauge factor: 5.93) and excellent reversibility. Due to the versatility, the sensor effectively detected human motion in normal and underwater environment, and possessed a sensitive pressure and thermal response. Overall, the present work provided a promising route to develop multifunctional and "green" biopolymer-based hydrogels for wearable sensors in human health and sporting applications.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Antibacterianos/farmacologia , Condutividade Elétrica , Humanos , Hidrogéis/química , Amido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...