Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Res ; 214(Pt 2): 113849, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35843282

RESUMO

Androgens are released by humans and livestock into the environment and which cause potent endocrine disruptions even at nanogram per liter levels. In this article, we reviewed updated research results on the structure, source, distribution characteristics and the fate of androgens in ecological systems; and emphasized the potential risk of androgens in aquatic organism. Androgens have moderately solubility in water (23.6-58.4 mg/L) and moderately hydrophobic (log Kow 2.75-4.40). The concentration of androgens in surface waters were mostly in ng/L ranges. The removal efficiencies of main wastewater treatment processes were about 70-100%, except oxidation ditch and stabilization ponds. Sludge adsorption and microbial degradation play important role in the androgens remove. The conjugated androgens were transformed into free androgens in environmental matrices. Global efforts to provide more toxicity data and establish standard monitoring methods need a revisit. Of the day available, there is an urgent need for comprehensive consideration of the impact of androgens on the environment and ecology.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Androgênios/toxicidade , Organismos Aquáticos , Monitoramento Ambiental , Humanos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-952903

RESUMO

Since December, 2019, an outbreak of pneumonia caused by the new coronavirus (2019-nCoV) has hit the city of Wuhan in the Hubei Province. With the continuous development of the epidemic, it has become a national public health crisis and calls for urgent antiviral treatments or vaccines. The spike protein on the coronavirus envelope is critical for host cell infection and virus vitality. Previous studies showed that 2019-nCoV is highly homologous to human SARS-CoV and attaches host cells though the binding of the spike receptor binding domain (RBD) domain to the angiotensin-converting enzyme II (ACE2). However, the molecular mechanisms of 2019-nCoV binding to human ACE2 and evolution of 2019-nCoV remain unclear. In this study, we have extensively studied the RBD-ACE2 complex, spike protein, and free RBD systems of 2019-nCoV and SARS-CoV using protein-protein docking and molecular dynamics (MD) simulations. It was shown that the RBD-ACE2 binding free energy for 2019-nCoV is significantly lower than that for SARS-CoV, which is consistent with the fact that 2019-nCoV is much more infectious than SARS-CoV. In addition, the spike protein of 2019-nCoV shows a significantly lower free energy than that of SARS-CoV, suggesting that 2019-nCoV is more stable and able to survive a higher temperature than SARS-CoV. This may also provide insights into the evolution of 2019-nCoV because SARS-like coronaviruses are thought to have originated in bats that are known to have a higher body-temperature than humans. It was also revealed that the RBD of 2019-nCoV is much more flexible especially near the binding site and thus will have a higher entropy penalty upon binding ACE2, compared to the RBD of SARS-CoV. That means that 2019-nCoV will be much more temperature-sensitive in terms of human infection than SARS-CoV. With the rising temperature, 2019-nCoV is expected to decrease its infection ability much faster than SARS-CoV, and get controlled more easily. The present findings are expected to be helpful for the disease prevention and control as well as drug and vaccine development of 2019-nCoV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...