Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Geroscience ; 43(5): 2105-2118, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34240333

RESUMO

With evolving cores, enrichment and training programs, and supported research projects, the San Antonio (SA) Nathan Shock Center has for 26 years provided critical support to investigators locally, nationally, and abroad. With its existing and growing intellectual capital, the SA Nathan Shock Center provides to local and external investigators an enhanced platform to conduct horizontally integrated (lifespan, healthspan, pathology, pharmacology) transformative research in the biology of aging, and serves as a springboard for advanced educational and training activities in aging research. The SA Nathan Shock Center consists of six cores: Administrative/Program Enrichment Core, Research Development Core, Aging Animal Models and Longevity Assessment Core, Pathology Core, Analytical Pharmacology and Drug Evaluation Core, and Integrated Physiology of Aging Core. The overarching goal of the SA Nathan Shock Center is to advance knowledge in the basic biology of aging and to identify molecular and cellular mechanisms that will facilitate the development of pharmacologic interventions and other strategies to extend healthy lifespan. In pursuit of this goal, we provide an innovative "one-stop shop" venue to accelerate transformative research in the biology of aging through our integrated research cores. Moreover, we aim to foster and promote career development of early-stage investigators in aging biology through our research development programs, to serve as a resource and partner to investigators from other Shock Centers, and to disseminate scientific knowledge and enhanced awareness about aging research. Overall, the SA Nathan Shock Center aims to be a leader in research that advances our understanding of the biology of aging and development of approaches to improve longevity and healthy aging.


Assuntos
Gerociência , Envelhecimento Saudável , Envelhecimento , Animais , Longevidade
2.
J Virol ; 95(20): e0101021, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319784

RESUMO

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is poorly understood due to a lack of an animal model that recapitulates severe human disease. Here, we report a Syrian hamster model that develops progressive lethal pulmonary disease that closely mimics severe coronavirus disease 2019 (COVID-19). We evaluated host responses using a multi-omic, multiorgan approach to define proteome, phosphoproteome, and transcriptome changes. These data revealed both type I and type II interferon-stimulated gene and protein expression along with a progressive increase in chemokines, monocytes, and neutrophil-associated molecules throughout the course of infection that peaked in the later time points correlating with a rapidly developing diffuse alveolar destruction and pneumonia that persisted in the absence of active viral infection. Extrapulmonary proteome and phosphoproteome remodeling was detected in the heart and kidneys following viral infection. Together, our results provide a kinetic overview of multiorgan host responses to severe SARS-CoV-2 infection in vivo. IMPORTANCE The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has created an urgent need to understand the pathogenesis of this infection. These efforts have been impaired by the lack of animal models that recapitulate severe coronavirus disease 2019 (COVID-19). Here, we report a hamster model that develops severe COVID-19-like disease following infection with human isolates of SARS-CoV-2. To better understand pathogenesis, we evaluated changes in gene transcription and protein expression over the course of infection to provide an integrated multiorgan kinetic analysis of the host response to infection. These data reveal a dynamic innate immune response to infection and corresponding immune pathologies consistent with severe human disease. Altogether, this model will be useful for understanding the pathogenesis of severe COVID-19 and for testing interventions.


Assuntos
COVID-19/imunologia , COVID-19/metabolismo , Imunidade Inata , Proteoma , Transcriptoma , Animais , COVID-19/genética , COVID-19/virologia , Modelos Animais de Doenças , Ontologia Genética , Coração/virologia , Rim/metabolismo , Rim/virologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Miocárdio/metabolismo , Fosfoproteínas/metabolismo , Proteômica , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Carga Viral
4.
Clin Colorectal Cancer ; 20(1): e61-e70, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33132009

RESUMO

BACKGROUND: We previously showed that lifelong rapamycin treatment of short-lived ApcMin/+ mice, a model for familial adenomatous polyposis, resulted in a normal lifespan. ApcMin/+ mice develop colon polyps with a low frequency but can be converted to a colon cancer model by dextran sodium sulfate (DSS) treatments (ApcMin/+-DSS model). MATERIALS AND METHODS: We asked, what effect would pretreatment of ApcMin/+ mice with chronic rapamycin prior to DSS exposure have on survival and colonic neoplasia? RESULTS: Forty-two ppm enteric formulation of rapamycin diet exacerbated the temporary weight loss associated with DSS treatment in both sexes. However, our survival studies showed that chronic rapamycin treatment significantly extended lifespan of ApcMin/+-DSS mice (both sexes) by reductions in colon neoplasia and prevention of anemia. Rapamycin also had prophylactic effects on colon neoplasia induced by azoxymethane and DSS in C57BL/6 males and females. Immunoblot assays showed the expected inhibition of complex 1 of mechanistic or mammalian target of rapamycin (mTORC1) and effectors (S6K→rpS6 and S6K→eEF2K→eEF2) in colon by lifelong rapamycin treatments. To address the question of cell types affected by chronic enteric rapamycin treatment, immunohistochemistry analyses demonstrated that crypt cells had a prominent reduction in rpS6 phosphorylation and increase in eEF2 phosphorylation relative controls. CONCLUSION: These data indicate that enteric rapamycin prevents or delays colon neoplasia in ApcMin/+-DSS mice through inhibition of mTORC1 in the crypt cells.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Carcinogênese/efeitos dos fármacos , Neoplasias do Colo/prevenção & controle , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Sirolimo/farmacologia , Animais , Carcinogênese/genética , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/mortalidade , Modelos Animais de Doenças , Feminino , Heterozigoto , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Transgênicos , Sirolimo/uso terapêutico , Análise de Sobrevida , Fatores de Tempo
5.
Aging Pathobiol Ther ; 2(1): 20-31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35356005

RESUMO

Objective: In this study, the effects of overexpression of thioredoxin 2 (Trx2) on aging and age-related diseases were examined using Trx2 transgenic mice [Tg(TXN2]+/0]. Because our previous studies demonstrated that thioredoxin (Trx) overexpression in the cytosol (Trx1) did not extend maximum lifespan, this study was conducted to test if increased Trx2 expression in mitochondria shows beneficial effects on aging and age-related pathology. Methods: Trx2 transgenic mice were generated using a fragment of the human genome containing the TXN2 gene. Effects of Trx2 overexpression on survival, age-related pathology, oxidative stress, and redox-sensitive signaling pathways were examined in male Tg(TXN2)+/0 mice. Results: Trx2 levels were significantly higher (approximately 1.6- to 5-fold) in all of the tissues we examined in Tg(TXN2)+/0 mice compared to wild-type (WT) littermates, and the expression levels were maintained during aging (up to 22-24 months old). Trx2 overexpression did not alter the levels of Trx1, glutaredoxin, glutathione, or other major antioxidant enzymes. Overexpression of Trx2 was associated with reduced reactive oxygen species (ROS) production from mitochondria and lower isoprostane levels compared to WT mice. When we conducted the survival study, male Tg(TXN2)+/0 mice showed a slight extension (approximately 8-9%] of mean, median, and 10th percentile lifespans; however, the survival curve was not significantly different from WT mice. Cross-sectional pathological analysis (22-24 months old) showed that Tg(TXN2)+/0 mice had a slightly higher severity of lymphoma; however, tumor burden, disease burden, and severity of glomerulonephritis and inflammation were similar to WT mice. Trx2 overexpression was also associated with higher c-Jun and c-Fos levels; however, mTOR activity and levels of NFκB p65 and p50 were similar to WT littermates. Conclusions: Our findings suggest that the increased levels of Trx2 in mitochondria over the lifespan in Tg(TXN2)+/0 mice showed a slight life-extending effect, reduced ROS production from mitochondria and oxidative damage to lipids, but showed no significant effects on aging and age-related diseases.

6.
Aging Pathobiol Ther ; 2(3): 126-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35493763

RESUMO

Our laboratory has conducted the first systematic survival studies to examine the biological effects of the antioxidant protein thioredoxin (Trx) on aging and age-related pathology. Our studies with C57BL/6 mice overexpressing Trx1 [Tg(act-TRX1)+/0 and Tg(TXN)+/0) demonstrated a slight extension in early lifespan compared to wild-type (WT) mice; however, no significant effects were observed in the later part of life. Overexpression of Trx2 in male C57BL/6 mice [Tg(TXN2)+/0] demonstrated a slightly extended lifespan compared to WT mice. The pathology results from two lines of Trx1 transgenic mice showed a slightly higher incidence of age-related neoplastic diseases compared to WT mice, and a slight increase in the severity of lymphoma, a major neoplastic disease, was observed in Trx2 transgenic mice. Together these studies indicate that Trx overexpression in one compartment of the cell (cytosol or mitochondria alone) has marginal beneficial effects on lifespan. On the other hand, down-regulation of Trx in either the cytosol (Trx1KO) or mitochondria (Trx2KO) showed no significant changes in lifespan compared to WT mice, despite several changes in pathophysiology of these knockout mice. When we examined the synergetic effects of overexpressing Trx1 and Trx2, TXNTg x TXN2Tg mice showed a significantly shorter lifespan with accelerated cancer development compared to WT mice. These results suggest that synergetic effects of Trx overexpression in both the cytosol and mitochondria on aging are deleterious and the development of age-related cancer is accelerated. On the other hand, we have recently found that down-regulation of Trx in both the cytosol and mitochondria in Trx1KO x Trx2KO mice has beneficial effects on aging. The results generated from our lab along with our ongoing study using Trx1KO x Trx2KO mice could elucidate the key pathways (i.e., apoptosis and autophagy) that prevent accumulation of damaged cells and genomic instability leading to reduced cancer formation.

7.
Cell Metab ; 30(6): 1024-1039.e6, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31735593

RESUMO

During aging, visceral adiposity is often associated with alterations in adipose tissue (AT) leukocytes, inflammation, and metabolic dysfunction. However, the contribution of AT B cells in immunometabolism during aging is unexplored. Here, we show that aging is associated with an expansion of a unique population of resident non-senescent aged adipose B cells (AABs) found in fat-associated lymphoid clusters (FALCs). AABs are transcriptionally distinct from splenic age-associated B cells (ABCs) and show greater expansion in female mice. Functionally, whole-body B cell depletion restores proper lipolysis and core body temperature maintenance during cold stress. Mechanistically, the age-induced FALC formation, AAB, and splenic ABC expansion is dependent on the Nlrp3 inflammasome. Furthermore, AABs express IL-1R, and inhibition of IL-1 signaling reduces their proliferation and increases lipolysis in aging. These data reveal that inhibiting Nlrp3-dependent B cell accumulation can be targeted to reverse metabolic impairment in aging AT.


Assuntos
Tecido Adiposo , Envelhecimento/metabolismo , Linfócitos B , Homeostase , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Regulação da Temperatura Corporal , Resposta ao Choque Frio , Feminino , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipólise , Masculino , Camundongos , Receptores de Interleucina-1/metabolismo
8.
Acta Diabetol ; 56(2): 227-236, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30673859

RESUMO

AIMS: Ectopic fat is a recognized contributor to insulin resistance and metabolic dysfunction, while the role of fat deposition inside intestinal wall tissue remains understudied. We undertook this study to directly quantify and localize intramural fat deposition in duodenal tissue and determine its association with adiposity. METHODS: Duodenal tissues were collected from aged (21.2 ± 1.3 years, 19.5 ± 3.1 kg, n = 39) female baboons (Papio sp.). Fasted blood was collected for metabolic profiling and abdominal circumference (AC) measurements were taken. Primary tissue samples were collected at the major duodenal papilla at necropsy: one full cross section was processed for hematoxylin and eosin staining and evaluated; a second full cross section was processed for direct chemical lipid analysis on which percentage duodenal fat content was calculated. RESULTS: Duodenal fat content obtained by direct tissue quantification showed considerable variability (11.95 ± 6.93%) and was correlated with AC (r = 0.60, p < 0.001), weight (r = 0.38, p = 0.02), leptin (r = 0.63, p < 0.001), adiponectin (r = - 0.32, p < 0.05), and triglyceride (r = 0.41, p = 0.01). The relationship between duodenal fat content and leptin remained after adjusting for body weight and abdominal circumference. Intramural adipocytes were found in duodenal sections from all animals and were localized to the submucosa. Consistent with the variation in tissue fat content, the submucosal adipocytes were non-uniformly distributed in clusters of varying size. Duodenal adipocytes were larger in obese vs. lean animals (106.9 vs. 66.7 µm2, p = 0.02). CONCLUSIONS: Fat accumulation inside the duodenal wall is strongly associated with adiposity and adiposity related circulating biomarkers in baboons. Duodenal tissue fat represents a novel and potentially metabolically active site of ectopic fat deposition.


Assuntos
Adiposidade , Duodeno/patologia , Gordura Intra-Abdominal/patologia , Obesidade/patologia , Adiponectina/sangue , Animais , Feminino , Gordura Intra-Abdominal/metabolismo , Leptina/sangue , Papio , Triglicerídeos/sangue
9.
J Med Primatol ; 48(1): 68-73, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30246873

RESUMO

We present a case of hepatocellular carcinoma (HCC) in the placenta of healthy baboon (Papio spp.). Grossly, the fetal, maternal, and placental tissues were unremarkable. Histologically, the placenta contained an unencapsulated, poorly demarcated, infiltrative, solidly cellular neoplasm composed of cells that resembled hepatocytes. The neoplastic cells were diffusely positive for vimentin and focally positive for Ae1/Ae3, Arginase -1, glutamine synthetase, and CD10, and negative for ER, vascular markers (CD31 and D240), S100, glypican, C-reactive protein, FABP, desmin, and beta-catenin; INI1 positivity was similar to non-neoplastic tissues. The case likely represents a unique subtype of HCC.


Assuntos
Carcinoma Hepatocelular/veterinária , Doenças dos Macacos/patologia , Papio , Placenta/patologia , Animais , Animais de Zoológico , Carcinoma Hepatocelular/classificação , Carcinoma Hepatocelular/patologia , Feminino , Doenças dos Macacos/classificação , Gravidez
10.
Geroscience ; 41(1): 25-38, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30547325

RESUMO

Cardiovascular disease, rare in premenopausal women, increases sharply at menopause and is typically accompanied by chronic inflammation. Previous work in our laboratory demonstrated that replacing senescent ovaries in post-reproductive mice with young, actively cycling ovaries restored many health benefits, including decreased cardiomyopathy and restoration of immune function. Our objective here was to determine if depletion of germ cells from young transplanted ovaries would alter the ovarian-dependent extension of life and health span. Sixty-day-old germ cell-depleted and germ cell-containing ovaries were transplanted to post-reproductive, 17-month-old mice. Mean life span for female CBA/J mice is approximately 644 days. Mice that received germ cell-containing ovaries lived 798 days (maximum = 815 days). Mice that received germ cell-depleted ovaries lived 880 days (maximum = 1046 days), 29% further past the time of surgery than mice that received germ cell-containing ovaries. The severity of inflammation was reduced in all mice that received young ovaries, whether germ cell-containing or germ cell-depleted. Aging-associated inflammatory cytokine changes were reversed in post-reproductive mice by 4 months of new-ovary exposure. In summary, germ cell depletion enhanced the longevity-extending effects of the young, transplanted ovaries and, as with germ cell-containing ovaries, decreased the severity of inflammation, but did so independent of germ cells. Based on these observations, we propose that gonadal somatic cells are programed to preserve the somatic health of the organism with the intent of facilitating future germline transmission. As reproductive potential decreases or is lost, the incentive to preserve the somatic health of the organism is lost as well.


Assuntos
Células Germinativas/fisiologia , Inflamação/patologia , Longevidade/fisiologia , Ovário/fisiologia , Reprodução/fisiologia , Animais , Senescência Celular/fisiologia , Citocinas/sangue , Feminino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Transplante de Órgãos , Ovário/citologia , Ovário/imunologia , Óvulo/fisiologia , Transplantados
11.
Pathobiol Aging Age Relat Dis ; 8(1): 1533754, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30370017

RESUMO

We examined the effects of continuous overexpression of thioredoxin (Trx) 1 on aging in Trx1 transgenic mice [Tg(TXN)+/0]. This study was conducted to test whether increased thioredoxin expression over the lifespan in mice would alter aging and age-related pathology because our previous study demonstrated that Tg(act-TXN)+/0 mice had no significant maximum life extension, possibly due to the use of actin as a promoter, which may have resulted in loss of Trx1 overexpression during aging. To test this hypothesis, we generated new Trx1 transgenic mice using a fragment of the human genome containing the TXN gene with an endogenous promoter to ensure continuous overexpression of Trx1 throughout the lifespan. Universal overexpression of Trx1 was observed, and Trx1 overexpression was maintained during aging (up to 22-24 months old) in the Tg(TXN)+/0 mice. The levels of Trx1 are significantly higher (approximately 4 to 31 fold) in all of the tissues examined in the Tg(TXN)+/0 mice compared to the wild-type (WT) littermates. The overexpression of Trx1 did not cause any changes in the levels of Trx2, glutaredoxin, glutathione, or other major antioxidant enzymes. The survival study demonstrated that male Tg(TXN)+/0 mice slightly extended the earlier part of the lifespan compared to WT littermates, but no significant life extension was observed over the lifespan. The cross-sectional pathological analysis (22-25 months old) showed that Tg(TXN)+/0 mice had a significantly higher severity of lymphoma and more tumor burden than WT mice, which was associated with the suppression of the apoptosis signal-regulating kinase 1 (ASK1) pathway. Our findings suggest that the increased levels of Trx1 over the lifespan in Tg(TXN)+/0 mice showed some beneficial effects (slight extension of lifespan) in the earlier part of life but had no significant effects on median or maximum lifespans, and increased Trx1 levels enhanced tumor development in old mice.

12.
Geroscience ; 40(5-6): 453-468, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30121784

RESUMO

To investigate the role of increased levels of thioredoxin (Trx) in both the cytosol (Trx1) and mitochondria (Trx2) on aging, we have conducted a study to examine survival and age-related diseases using male mice overexpressing Trx1 and Trx2 (TXNTg × TXN2Tg). Our study demonstrated that the upregulation of Trx in both the cytosol and mitochondria in male TXNTg × TXN2Tg C57BL/6 mice resulted in a significantly shorter lifespan compared to wild-type (WT) mice. Cross-sectional pathology data showed a slightly higher incidence of neoplastic diseases in TXNTg × TXN2Tg mice than WT mice. The incidence of lymphoma, a major neoplastic disease in C57BL/6 mice, was slightly higher in TXNTg × TXN2Tg mice than in WT mice, and more importantly, the severity of lymphoma was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Furthermore, the total number of histopathological changes in the whole body (disease burden) was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Therefore, our study suggests that overexpression of Trx in both the cytosol and mitochondria resulted in deleterious effects on aging and accelerated the development of age-related diseases, especially cancer, in male C57BL/6 mice.


Assuntos
Envelhecimento/fisiologia , Citosol/metabolismo , Longevidade/fisiologia , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
13.
Nat Med ; 24(8): 1246-1256, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988130

RESUMO

Physical function declines in old age, portending disability, increased health expenditures, and mortality. Cellular senescence, leading to tissue dysfunction, may contribute to these consequences of aging, but whether senescence can directly drive age-related pathology and be therapeutically targeted is still unclear. Here we demonstrate that transplanting relatively small numbers of senescent cells into young mice is sufficient to cause persistent physical dysfunction, as well as to spread cellular senescence to host tissues. Transplanting even fewer senescent cells had the same effect in older recipients and was accompanied by reduced survival, indicating the potency of senescent cells in shortening health- and lifespan. The senolytic cocktail, dasatinib plus quercetin, which causes selective elimination of senescent cells, decreased the number of naturally occurring senescent cells and their secretion of frailty-related proinflammatory cytokines in explants of human adipose tissue. Moreover, intermittent oral administration of senolytics to both senescent cell-transplanted young mice and naturally aged mice alleviated physical dysfunction and increased post-treatment survival by 36% while reducing mortality hazard to 65%. Our study provides proof-of-concept evidence that senescent cells can cause physical dysfunction and decreased survival even in young mice, while senolytics can enhance remaining health- and lifespan in old mice.


Assuntos
Dasatinibe/farmacologia , Longevidade/efeitos dos fármacos , Quercetina/farmacologia , Tecido Adiposo/metabolismo , Animais , Transplante de Células , Senescência Celular/efeitos dos fármacos , Citocinas/metabolismo , Dieta Hiperlipídica , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Estresse Fisiológico/efeitos dos fármacos , Análise de Sobrevida
14.
J Med Primatol ; 47(6): 393-401, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30039863

RESUMO

INTRODUCTION: Gut microbial communities are critical players in the pathogenesis of obesity. Pregnancy is associated with increased bacterial load and changes in gut bacterial diversity. Sparse data exist regarding composition of gut microbial communities in obesity combined with pregnancy. MATERIAL AND METHODS: Banked tissues were collected under sterile conditions during necropsy, from three non-obese (nOb) and four obese (Ob) near-term pregnant baboons. Sequences were assigned taxonomy using the Ribosomal Database Project classifier. Microbiome abundance and its difference between distinct groups were assessed by a nonparametric test. RESULTS: Three families predominated in both the nOb and Ob colonic microbiome: Prevotellaceae (25.98% and 32.71% respectively), Ruminococcaceae (12.96% and 7.48%), and Lachnospiraceae (8.78% and 11.74%). Seven families of the colon microbiome displayed differences between Ob and nOb groups. CONCLUSION: Changes in gut microbiome in pregnant obese animals open the venue for dietary manipulation in pregnancy.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Doenças dos Macacos/microbiologia , Obesidade/microbiologia , Papio/microbiologia , Animais , Bactérias/classificação , Feminino , Gravidez
15.
Nat Commun ; 9(1): 2394, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921922

RESUMO

Diminished growth factor signaling improves longevity in laboratory models, while a reduction in the somatotropic axis is favorably linked to human aging and longevity. Given the conserved role of this pathway on lifespan, therapeutic strategies, such as insulin-like growth factor-1 receptor (IGF-1R) monoclonal antibodies (mAb), represent a promising translational tool to target human aging. To this end, we performed a preclinical study in 18-mo-old male and female mice treated with vehicle or an IGF-1R mAb (L2-Cmu, Amgen Inc), and determined effects on aging outcomes. Here we show that L2-Cmu preferentially improves female healthspan and increases median lifespan by 9% (P = 0.03) in females, along with a reduction in neoplasms and inflammation (P ≤ 0.05). Thus, consistent with other models, targeting IGF-1R signaling appears to be most beneficial to females. Importantly, these effects could be achieved at advanced ages, suggesting that IGF-1R mAbs could represent a promising therapeutic candidate to delay aging.


Assuntos
Anticorpos Monoclonais/farmacologia , Longevidade/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Receptor IGF Tipo 1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/prevenção & controle , Receptor IGF Tipo 1/imunologia , Receptor IGF Tipo 1/metabolismo , Fatores Sexuais , Carga Tumoral/efeitos dos fármacos
16.
J Med Primatol ; 46(5): 271-290, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28543059

RESUMO

We present the spontaneous pathological lesions identified as a result of necropsy or biopsy for 245 chimpanzees (Pan troglodytes) over a 35-year period. A review of the pathology database was performed for all diagnoses on chimpanzees from 1980 to 2014. All morphologic diagnoses, associated system, organ, etiology, and demographic information were reviewed and analyzed. Cardiomyopathy was the most frequent lesion observed followed by hemosiderosis, hyperplasia, nematodiasis, edema, and hemorrhage. The most frequently affected systems were the gastrointestinal, cardiovascular, urogenital, respiratory, and lymphatic/hematopoietic systems. The most common etiology was undetermined, followed by degenerative, physiologic, neoplastic, parasitic, and bacterial. Perinatal and infant animals were mostly affected by physiologic etiologies and chimpanzee-induced trauma. Bacterial and physiologic etiologies were more common in juvenile animals. Degenerative and physiologic (and neoplastic in geriatric animals) etiologies predominated in adult, middle aged, and geriatric chimpanzees.


Assuntos
Doenças dos Símios Antropoides/patologia , Pan troglodytes , Animais , Doenças dos Símios Antropoides/epidemiologia , Doenças dos Símios Antropoides/etiologia , Biópsia/veterinária , Incidência
17.
Geroscience ; 39(2): 129-145, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28409331

RESUMO

Reduced circulating levels of IGF-1 have been proposed as a conserved anti-aging mechanism that contributes to increased lifespan in diverse experimental models. However, IGF-1 has also been shown to be essential for normal development and the maintenance of tissue function late into the lifespan. These disparate findings suggest that IGF-1 may be a pleiotropic modulator of health and aging, as reductions in IGF-1 may be beneficial for one aspect of aging, but detrimental for another. We postulated that the effects of IGF-1 on tissue health and function in advanced age are dependent on the tissue, the sex of the animal, and the age at which IGF-1 is manipulated. In this study, we examined how alterations in IGF-1 levels at multiple stages of development and aging influence overall lifespan, healthspan, and pathology. Specifically, we investigated the effects of perinatal, post-pubertal, and late-adult onset IGF-1 deficiency using genetic and viral approaches in both male and female igf f/f C57Bl/6 mice. Our results support the concept that IGF-1 levels early during lifespan establish the conditions necessary for subsequent healthspan and pathological changes that contribute to aging. Nevertheless, these changes are specific for each sex and tissue. Importantly, late-life IGF-1 deficiency (a time point relevant for human studies) reduces cancer risk but does not increase lifespan. Overall, our results indicate that the levels of IGF-1 during development influence late-life pathology, suggesting that IGF-1 is a developmental driver of healthspan, pathology, and lifespan.


Assuntos
Pleiotropia Genética , Nível de Saúde , Fator de Crescimento Insulin-Like I/fisiologia , Longevidade , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
J Med Primatol ; 46(3): 106-115, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28418090

RESUMO

We present the spontaneous causes of mortality for 137 chimpanzees (Pan troglodytes) over a 35-year period. A record review of the pathology database was performed and a primary cause of mortality was determined for each chimpanzee. The most common causes of mortality were as follows: cardiomyopathy (40% of all mortalities), stillbirth/abortion, acute myocardial necrosis, chimpanzee-induced trauma, amyloidosis, and pneumonia. Five morphologic diagnoses accounted for 61% of mortalities: cardiomyopathy, hemorrhage, acute myocardial necrosis, amyloidosis, and pneumonia. The most common etiologies were degenerative, undetermined, bacterial, traumatic, and neoplastic. The cardiovascular system was most frequently involved, followed by the gastrointestinal, respiratory, and multisystemic diseases. Degenerative diseases were the primary etiological cause of mortality of the adult captive chimpanzee population. Chimpanzee-induced trauma was the major etiological cause of mortality among the perinatal and infant population. This information should be a useful resource for veterinarians and researchers working with chimpanzees.


Assuntos
Doenças dos Símios Antropoides/mortalidade , Causas de Morte , Pan troglodytes , Animais , Animais de Laboratório , Doenças dos Símios Antropoides/etiologia , Masculino , Texas/epidemiologia
19.
PLoS Negl Trop Dis ; 11(2): e0005233, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28225764

RESUMO

BACKGROUND: Non-human primates have been shown to be useful models for Chagas disease. We previously reported that natural T. cruzi infection of cynomolgus macaques triggers clinical features and immunophenotypic changes of peripheral blood leukocytes resembling those observed in human Chagas disease. In the present study, we further characterize the cytokine-mediated microenvironment to provide supportive evidence of the utility of cynomolgus macaques as a model for drug development for human Chagas disease. METHODS AND FINDINGS: In this cross-sectional study design, flow cytometry and systems biology approaches were used to characterize the ex vivo and in vitro T. cruzi-specific functional cytokine signature of circulating leukocytes from TcI-T. cruzi naturally infected cynomolgus macaques (CH). Results showed that CH presented an overall CD4+-derived IFN-γ pattern regulated by IL-10-derived from CD4+ T-cells and B-cells, contrasting with the baseline profile observed in non-infected hosts (NI). Homologous TcI-T. cruzi-antigen recall in vitro induced a broad pro-inflammatory cytokine response in CH, mediated by TNF from innate/adaptive cells, counterbalanced by monocyte/B-cell-derived IL-10. TcIV-antigen triggered a more selective cytokine signature mediated by NK and T-cell-derived IFN-γ with modest regulation by IL-10 from T-cells. While NI presented a cytokine network comprised of small number of neighborhood connections, CH displayed a complex cross-talk amongst network elements. Noteworthy, was the ability of TcI-antigen to drive a complex global pro-inflammatory network mediated by TNF and IFN-γ from NK-cells, CD4+ and CD8+ T-cells, regulated by IL-10+CD8+ T-cells, in contrast to the TcIV-antigens that trigger a modest network, with moderate connecting edges. CONCLUSIONS: Altogether, our findings demonstrated that CH present a pro-inflammatory/regulatory cytokine signature similar to that observed in human Chagas disease. These data bring additional insights that further validate these non-human primates as experimental models for Chagas disease.


Assuntos
Doença de Chagas/imunologia , Mediadores da Inflamação/imunologia , Macaca fascicularis , Trypanosoma cruzi/fisiologia , Animais , Linfócitos B/imunologia , Doença de Chagas/genética , Doença de Chagas/parasitologia , Estudos Transversais , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Trypanosoma cruzi/imunologia
20.
Cell Metab ; 23(6): 1093-1112, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27304509

RESUMO

Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions.


Assuntos
Envelhecimento/metabolismo , Ingestão de Energia , Caracteres Sexuais , Envelhecimento/genética , Animais , Autofagia/genética , Biomarcadores/metabolismo , Restrição Calórica , Análise por Conglomerados , Ingestão de Energia/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Homeostase/genética , Sulfeto de Hidrogênio/metabolismo , Ilhotas Pancreáticas/anatomia & histologia , Fígado/metabolismo , Fígado/ultraestrutura , Longevidade/genética , Longevidade/fisiologia , Masculino , Metaboloma , Metabolômica , Camundongos , Camundongos Endogâmicos , Mitocôndrias/metabolismo , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...