Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 701: 108792, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33556357

RESUMO

The influence of the side chains and positioning of the carboxy-terminal residues of NADPH-cytochrome P450 oxidoreductase (CYPOR) on catalytic activity, structure of the carboxy terminus, and interaction with cofactors has been investigated. A tandem deletion of residues Asp675 and Val676, that was expected to shift the position of the functionally important Trp677, resulted in higher cytochrome c reductase activity than that expected from previous studies on the importance of Asp675 and Trp677 in catalysis. Crystallographic determination of the structure of this variant revealed two conformations of the carboxy terminus. In one conformation (Mol A), the last α-helix is partially unwound, resulting in repositioning of all subsequent residues in ß-strand 21, from Arg671 to Leu674 (corresponding to Ser673 and Val676 in the wild type structure). This results in the two C-terminal residues, Trp677 and Ser678, being maintained in their wild type positions, with the indole ring of Trp677 stacked against the isoalloxazine ring of FAD as seen in the wild type structure, and Ser673 occupying a similar position to the catalytic residue, Asp675. The other, more disordered conformation is a mixture of the Mol A conformation and one in which the last α-helix is not unwound and the nicotinamide ring is in one of two conformations, out towards the protein surface as observed in the wild type structure (1AMO), or stacked against the flavin ring, similar to that seen in the W677X structure that lacks Trp677 and Ser678 (1JA0). Further kinetic analysis on additional variants showed deletion or substitution of alanine or glycine for Trp677 in conjunction with deletion of Ser678 produced alterations in interactions of CYPOR with NADP+, 2'5'-ADP, and 2'-AMP, as well as the pH dependence of cytochrome c reductase activity. We postulate that deletion of bulky residues at the carboxy terminus permits increased mobility leading to decreased affinity for the 2'5'-ADP and 2'-AMP moieties of NADP+ and subsequent domain movement.


Assuntos
Difosfato de Adenosina/química , Monofosfato de Adenosina/química , Flavina-Adenina Dinucleotídeo/química , NADPH-Ferri-Hemoproteína Redutase/química , NADP/química , Sítios de Ligação , Cristalografia por Raios X , Cinética , NADPH-Ferri-Hemoproteína Redutase/genética , Conformação Proteica em alfa-Hélice , Relação Estrutura-Atividade
2.
Thyroid ; 28(7): 933-940, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29845889

RESUMO

BACKGROUND: The high constitutive, or ligand-independent, activity of the thyrotropin receptor (TSHR) is of clinical importance in some thyroid conditions, particularly well-differentiated thyroid carcinoma remnants following incomplete ablative therapy (surgery and radioiodine). Under these conditions, even total suppression of TSH by thyroid hormone administration does not fully reduce TSHR activity, a driver of thyrocyte growth. METHODS: CS-17 is a murine monoclonal antibody that has inverse agonist activity in that it suppresses TSHR constitutive activity. This study crystallized the CS-17 Fab and determined its atomic structure at a resolution of 3.4 Å. RESULTS: In silico docking of this structure to that of the TSHR extracellular domain was accomplished by targeting to TSHR residue tyrosine 195 (Y195) known to contribute to the CS-17 epitope. High affinity interaction between these two molecules, primarily by the CS-17 immunoglobulin heavy chain, was validated by energetic analysis (KD of 8.7 × 10-11 M), as well as by previously obtained data on a number of individual TSHR amino acids in three regions whose mutagenesis reduced CS-17 binding as detected by flow cytometry. CONCLUSIONS: Structural insight at atomic resolution of a TSHR antibody with inverse agonist activity opens the way for the development of a molecule with therapeutic potential, particularly in thyroid carcinoma. For this purpose, CS-17 will require "humanization" by substitution of its constant region (Fc component). In addition, with its epitope defined, the CS-17 affinity can be increased further by mutagenesis of selected amino acids in its heavy- and light-chain complementarity determining regions.


Assuntos
Anticorpos Monoclonais/química , Epitopos , Receptores da Tireotropina/imunologia , Animais , Células CHO , Cricetulus , Humanos , Imunoglobulinas Estimuladoras da Glândula Tireoide
3.
Org Lett ; 18(4): 780-3, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26849068

RESUMO

A conformational study of branimycin was performed using single-crystal X-ray crystallography to characterize the solid-state form, while a combination of NMR spectroscopy and molecular modeling was employed to gain information about the solution structure. Comparison of the crystal structure with its solution counterpart showed no significant differences in conformation, confirming the relative rigidity of the tricyclic system. However, these experiments revealed that the formerly proposed stereochemistry of branimycin at 17-C should be revised.


Assuntos
Macrolídeos/química , Cristalografia por Raios X , Conformação Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo
4.
Proc Natl Acad Sci U S A ; 112(8): 2419-24, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675500

RESUMO

G-protein metallochaperones ensure fidelity during cofactor assembly for a variety of metalloproteins, including adenosylcobalamin (AdoCbl)-dependent methylmalonyl-CoA mutase and hydrogenase, and thus have both medical and biofuel development applications. Here, we present crystal structures of IcmF, a natural fusion protein of AdoCbl-dependent isobutyryl-CoA mutase and its corresponding G-protein chaperone, which reveal the molecular architecture of a G-protein metallochaperone in complex with its target protein. These structures show that conserved G-protein elements become ordered upon target protein association, creating the molecular pathways that both sense and report on the cofactor loading state. Structures determined of both apo- and holo-forms of IcmF depict both open and closed enzyme states, in which the cofactor-binding domain is alternatively positioned for cofactor loading and for catalysis. Notably, the G protein moves as a unit with the cofactor-binding domain, providing a visualization of how a chaperone assists in the sequestering of a precious cofactor inside an enzyme active site.


Assuntos
Cupriavidus/enzimologia , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Metilmalonil-CoA Mutase/química , Metilmalonil-CoA Mutase/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Domínio Catalítico , Coenzimas/metabolismo , Sequência Conservada , Cristalografia por Raios X , GTP Fosfo-Hidrolases/química , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
5.
Mol Endocrinol ; 29(1): 99-107, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25419797

RESUMO

The TSH receptor (TSHR) A-subunit is more effective than the holoreceptor in inducing thyroid-stimulating antibodies (TSAb) that cause Graves' disease. A puzzling phenomenon is that 2 recombinant, eukaryotic forms of A-subunits (residues 22-289), termed active and inactive, are recognized mutually exclusively by pathogenic TSAb and mouse monoclonal antibody 3BD10, respectively. Understanding the structural difference between these TSHR A-subunit forms could provide insight into Graves' disease pathogenesis. The 3-dimensional structure of the active A-subunit (in complex with a human TSAb Fab, M22) is known, but the structural difference with inactive A-subunits is unknown. We solved the 3BD10 Fab 3-dimensional crystal structure. Guided by prior knowledge of a portion of its epitope, 3BD10 docked in silico with the known active TSHR-289 monomeric structure. Because both TSAb and 3BD10 recognize the active TSHR A-subunit monomer, this form of the molecule can be excluded as the basis for the active-inactive dichotomy, suggesting, instead a role for A-subunit quaternary structure. Indeed, in silico analysis revealed that M22, but not 3BD10, bound to a TSHR-289 trimer. In contrast, 3BD10, but not M22, bound to a TSHR-289 dimer. The validity of these models is supported experimentally by the temperature-dependent balance between active and inactive TSHR-289. In summary, we provide evidence for a structural basis to explain the conformational heterogeneity of TSHR A-subunits (TSHR-289). The pathophysiologic importance of these findings is that affinity maturation of pathogenic TSAb in Graves' disease is likely to involve a trimer of the shed TSHR A-subunit.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/ultraestrutura , Doença de Graves/imunologia , Imunoglobulinas Estimuladoras da Glândula Tireoide/imunologia , Receptores da Tireotropina/imunologia , Animais , Células CHO , Cricetulus , Cristalografia por Raios X , Epitopos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica/fisiologia
6.
Front Physiol ; 5: 478, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566081

RESUMO

GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways.

7.
J Comput Aided Mol Des ; 25(7): 677-87, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21732248

RESUMO

The stress-activated kinase p38α was used to evaluate a fragment-based drug discovery approach using the BioFocus fragment library. Compounds were screened by surface plasmon resonance (SPR) on a Biacore(™) T100 against p38α and two selectivity targets. A sub-set of our library was the focus of detailed follow-up analyses that included hit confirmation, affinity determination on 24 confirmed, selective hits and competition assays of these hits with respect to a known ATP binding site inhibitor. In addition, functional activity against p38α was assessed in a biochemical assay using a mobility shift platform (LC3000, Caliper LifeSciences). A selection of fragments was also evaluated using fluorescence lifetime (FLEXYTE(™)) and microscale thermophoresis (Nanotemper) technologies. A good correlation between the data for the different assays was found. Crystal structures were solved for four of the small molecules complexed to p38α. Interestingly, as determined both by X-ray analysis and SPR competition experiments, three of the complexes involved the fragment at the ATP binding site, while the fourth compound bound in a distal site that may offer potential as a novel drug target site. A first round of optimization around the remotely bound fragment has led to the identification of a series of triazole-containing compounds. This approach could form the basis for developing novel and active p38α inhibitors. More broadly, it illustrates the power of combining a range of biophysical and biochemical techniques to the discovery of fragments that facilitate the development of novel modulators of kinase and other drug targets.


Assuntos
Descoberta de Drogas/métodos , Proteína Quinase 14 Ativada por Mitógeno/química , Bibliotecas de Moléculas Pequenas/química , Triazóis/química , Sítios de Ligação , Compostos Bicíclicos com Pontes/química , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligantes , Conformação Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Ressonância de Plasmônio de Superfície/métodos , Difração de Raios X
8.
Biochemistry ; 47(4): 1167-75, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18171025

RESUMO

NADPH-dependent 2,4-dienoyl-CoA reductase (DCR) is one of the auxiliary enzymes required for the beta-oxidation of unsaturated fatty acids. Mutants of Escherichia coli DCR were generated by site-directed mutagenesis to explore the molecular mechanism of this enzyme. The Tyr166Phe mutant, which was expected to be inactive due to the loss of its putative proton donor residue, exhibited 27% of the wild-type activity. However, the product of the reduction was 3-enoyl-CoA instead of 2-enoyl-CoA, the normal product. Glu164 seems to function as proton donor in the Tyr166Phe mutant, because the Tyr166Phe/ Glu164Gln double mutant was inactive whereas the Glu164Ala mutant exhibited low but significant activity. His252 is important for the efficient operation of Tyr166 because a His252Ala mutation by itself reduced the activity of DCR by 3 orders of magnitude, whereas the Tyr166Phe/His252Ala double mutation exhibited 4.4% of the wild-type activity. This data supports a mechanism that has Tyr166 with the assistance of His252 acting as proton donor in the wild-type enzyme to produce 2-enoyl-CoA, whereas Glu164 serves as the proton donor in the absence of Tyr166 to yield 3-enoyl-CoA. A Cys337Ala mutation, which resulted in the loss of most of the iron and acid-labile sulfur, decreased the reductase activity more than 1000-fold. This observation agrees with the proposed operation of an intramolecular electron transport chain that is essential for the effective catalysis of E. coli DCR.


Assuntos
Escherichia coli/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Prótons , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Expressão Gênica , Cinética , Modelos Moleculares , Mutação/genética , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Estrutura Terciária de Proteína
9.
J Biol Chem ; 282(43): 31308-16, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17728257

RESUMO

MeaB is an auxiliary protein that plays a crucial role in the protection and assembly of the B(12)-dependent enzyme methylmalonyl-CoA mutase. Impairments in the human homologue of MeaB, MMAA, lead to methylmalonic aciduria, an inborn error of metabolism. To explore the role of this metallochaperone, its structure was solved in the nucleotide-free form, as well as in the presence of product, GDP. MeaB is a homodimer, with each subunit containing a central alpha/beta-core G domain that is typical of the GTPase family, as well as alpha-helical extensions at the N and C termini that are not found in other metalloenzyme chaperone GTPases. The C-terminal extension appears to be essential for nucleotide-independent dimerization, and the N-terminal region is implicated in protein-protein interaction with its partner protein, methylmalonyl-CoA mutase. The structure of MeaB confirms that it is a member of the G3E family of P-loop GTPases, which contains other putative metallochaperones HypB, CooC, and UreG. Interestingly, the so-called switch regions, responsible for signal transduction following GTP hydrolysis, are found at the dimer interface of MeaB instead of being positioned at the surface of the protein where its partner protein methylmalonyl-CoA mutase should bind. This observation suggests a large conformation change of MeaB must occur between the GDP- and GTP-bound forms of this protein. Because of their high sequence homology, the missense mutations in MMAA that result in methylmalonic aciduria have been mapped onto MeaB and, in conjunction with mutagenesis data, provide possible explanations for the pathology of this disease.


Assuntos
Desequilíbrio Ácido-Base/genética , Ácido Metilmalônico/urina , Metilmalonil-CoA Mutase/metabolismo , Chaperonas Moleculares/genética , Mutagênese , Erros Inatos do Metabolismo dos Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Metilmalonil-CoA Mutase/química , Metilmalonil-CoA Mutase/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutação Puntual , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Análise Espectral Raman
10.
Protein Sci ; 14(6): 1545-55, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15883186

RESUMO

Two monofunctional Delta(3), Delta(2)-enoyl-CoA isomerases, one in mitochondria (mECI) and the other in both mitochondria and peroxisomes (pECI), belong to the low-similarity isomerase/hydratase superfamily. Both enzymes catalyze the movement of a double bond from C3 to C2 of an unsaturated acyl-CoA substrate for re-entry into the beta-oxidation pathway. Mutagenesis has shown that Glu165 of rat mECI is involved in catalysis; however, the putative catalytic residue in yeast pECI, Glu158, is not conserved in mECI. To elucidate whether Glu165 of mECI is correctly positioned for catalysis, the crystal structure of rat mECI has been solved. Crystal packing suggests the enzyme is trimeric, in contrast to other members of the superfamily, which appear crystallographically to be dimers of trimers. The polypeptide fold of mECI, like pECI, belongs to a subset of this superfamily in which the C-terminal domain of a given monomer interacts with its own N-terminal domain. This differs from that of crotonase and 1,4-dihydroxy-2-naphtoyl-CoA synthase, whose C-terminal domains are involved in domain swapping with an adjacent monomer. The structure confirms Glu165 as the putative catalytic acid/base, positioned to abstract the pro-R proton from C2 and reprotonate at C4 of the acyl chain. The large tunnel-shaped active site cavity observed in the mECI structure explains the relative substrate promiscuity in acyl-chain length and stereochemistry. Comparison with the crystal structure of pECI suggests the catalytic residues from both enzymes are spatially conserved but not in their primary structures, providing a powerful reminder of how catalytic residues cannot be determined solely by sequence alignments.


Assuntos
Isomerases de Ligação Dupla Carbono-Carbono/química , Mitocôndrias/enzimologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dodecenoil-CoA Isomerase , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Ratos , Homologia Estrutural de Proteína
11.
J Biol Chem ; 278(39): 37553-60, 2003 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12840019

RESUMO

Escherichia coli 2,4-dienoyl-CoA reductase is an iron-sulfur flavoenzyme required for the metabolism of unsaturated fatty acids with double bonds at even carbon positions. The enzyme contains FMN, FAD, and a 4Fe-4S cluster and exhibits sequence homology to another iron-sulfur flavoprotein, trimethylamine dehydrogenase. It also requires NADPH as an electron source, resulting in reduction of the C4-C5 double bond of the acyl chain of the CoA thioester substrate. The structure presented here of a ternary complex of E. coli 2,4-dienoyl-CoA reductase with NADP+ and a fatty acyl-CoA substrate reveals a possible mechanism for substrate reduction and provides details of a plausible electron transfer mechanism involving both flavins and the iron-sulfur cluster. The reaction is initiated by hydride transfer from NADPH to FAD, which in turn transfers electrons, one at a time, to FMN via the 4Fe-4S cluster. In the final stages of the reaction, the fully reduced FMN provides a hydride ion to the C5 atom of substrate, and Tyr-166 and His-252 are proposed to form a catalytic dyad that protonates the C4 atom of the substrate and complete the reaction. Inspection of the substrate binding pocket explains the relative promiscuity of the enzyme, catalyzing reduction of both 2-trans,4-cis- and 2-trans,4-trans-dienoyl-CoA thioesters.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Mononucleotídeo de Flavina/metabolismo , Dados de Sequência Molecular , NADP/metabolismo , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...