Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 267: 129217, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33321275

RESUMO

Hexabromocyclododecanes (HBCDs) were used as flame-retardants until their ban in 2013. Among the 16 stereoisomers known, ε-HBCD has the highest symmetry. This makes ε-HBCD an interesting substrate to study the selectivity of biotransformations. We expressed three LinA dehydrohalogenase enzymes in E. coli bacteria, two wild-type, originating from Sphingobium indicum B90A bacteria and LinATM, a triple mutant of LinA2, with mutations of L96C, F113Y and T133 M. These enzymes are involved in the hexachlorocyclohexane (HCH) metabolism, specifically of the insecticide γ-HCH (Lindane). We studied the reactivity of those eight HBCD stereoisomers found in technical HBCD. Furthermore, we compared kinetics and selectivity of these LinA variants with respect to ε-HBCD. LC-MS data indicate that all enzymes converted ε-HBCD to pentabromocyclododecenes (PBCDens). Transformations followed Michaelis-Menten kinetics. Rate constants kcat and enzyme specificities kcat/KM indicate that ε-HBCD conversion was fastest and most specific with LinA2. Only one PBCDen stereoisomer was formed by LinA2, while LinA1 and LinATM produced mixtures of two PBCDE enantiomers at three times lower rates than LinA2. In analogy to the biotransformation of (-)ß-HBCD, with selective conversion of dibromides in R-S-configuration, we assume that 1E,5S,6R,9S,10R-PBCDen is the ε-HBCD transformation product from LinA2. Implementing three amino acids of the LinA1 substrate-binding site into LinA2 resulted in a triple mutant with similar kinetics and product specificity like LinA1. Thus, point-directed mutagenesis is an interesting tool to modify the substrate- and product-specificity of LinA enzymes and enlarge their scope to metabolize other halogenated persistent organic pollutants regulated under the Stockholm Convention.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Sphingomonadaceae , Biotransformação , Escherichia coli , Hexaclorocicloexano , Sphingomonadaceae/genética , Estereoisomerismo
2.
Adv Sci (Weinh) ; 7(15): 2000912, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775166

RESUMO

Metal oxide nanoparticles have emerged as exceptionally potent biomedical sensors and actuators due to their unique physicochemical features. Despite fascinating achievements, the current limited understanding of the molecular interplay between nanoparticles and the surrounding tissue remains a major obstacle in the rationalized development of nanomedicines, which is reflected in their poor clinical approval rate. This work reports on the nanoscopic characterization of inorganic nanoparticles in tissue by the example of complex metal oxide nanoparticle hybrids consisting of crystalline cerium oxide and the biodegradable ceramic bioglass. A validated analytical method based on semiquantitative X-ray fluorescence and inductively coupled plasma spectrometry is used to assess nanoparticle biodistribution following intravenous and topical application. Then, a correlative multiscale analytical cascade based on a combination of microscopy and spectroscopy techniques shows that the topically applied hybrid nanoparticles remain at the initial site and are preferentially taken up into macrophages, form apatite on their surface, and lead to increased accumulation of lipids in their surroundings. Taken together, this work displays how modern analytical techniques can be harnessed to gain unprecedented insights into the biodistribution and biotransformation of complex inorganic nanoparticles. Such nanoscopic characterization is imperative for the rationalized engineering of safe and efficacious nanoparticle-based systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...