Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37922460

RESUMO

Despite their many advantages, covalent organic frameworks (COFs) built from three-dimensional monomers are synthetically difficult to functionalize. Herein, we provide a new synthetic approach to the functionalization of a three-dimensional covalent organic framework (COF-300) by using a series of solid-state linkage transformations. By reducing the imine linkages of the framework to amine linkages, we produced a more hydrolytically stable material and liberated a nucleophilic amino group, poised for further functionalization. We then treated the amine-linked COF with diverse electrophiles to generate a library of functionalized materials, which we tested for their ability to adsorb perfluoroalkyl substances (PFAS) from water. The framework functionalized with dimethylammonium groups, COF-300-dimethyl, adsorbed more than 250 mg of perfluorooctanoic acid (PFOA) per 1 g of COF, which represents an approximately 14,500-fold improvement over that of COF-300 and underscores the importance of electrostatic interactions to PFAS adsorption performance. This work provides a conceptually new approach to the design and synthesis of functional three-dimensional COFs.

2.
Nanoscale Adv ; 4(18): 3957-3965, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36133337

RESUMO

To investigate the influence of manganese substitution on the saturation magnetization of manganese ferrite nanoparticles, samples with various compositions (Mn x Fe3-x O4, x = 0, 0.25, 0.5, 0.75, and 1) were synthesized and characterized. The saturation magnetization of such materials was both calculated using density functional theory and measured via vibrating sample magnetometry. A discrepancy was found; the computational data demonstrated a positive correlation between manganese content and saturation magnetization, while the experimental data exhibited an inverse correlation. X-ray diffraction (XRD) and magnetometry results indicated that the crystallite diameter and the magnetic diameter decrease when adding more manganese, which could explain the loss of magnetization of the particles. For 20 nm nanoparticles, with increasing manganese substitution level, the crystallite size decreases from 10.9 nm to 6.3 nm and the magnetic diameter decreases from 15.1 nm to 3.5 nm. Further high resolution transmission electron microscopy (HRTEM) analysis confirmed the manganese substitution induced defects in the crystal lattice, which encourages us to find ways of eliminating crystalline defects to make more reliable ferrite nanoparticles.

3.
Nanoscale ; 14(2): 299-304, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34877950

RESUMO

Divalent transition metals such as Co(II) are important targets for removal from water sources, due to their potential toxicity as well as their high value. In this study, we found that a series of porous organic polymers based on amide-linked tetraphenylmethane units are effective Co(II) ion adsorbents in aqueous solution. To increase the density of Co(II) binding sites, we then developed a templated synthesis in which the branched, rigid monomers are pre-assembled around Co(II) ions prior to polymerization. After polymer formation, the Co(II) template ions are removed to yield a material rich in Co(II) binding sites. Ion adsorption isotherms show that the Co(II)-templated material has an ion adsorption capacity significantly greater than those of the non-templated materials, highlighting the utility of a templated synthetic route. SEM and TEM images show the morphology of the templated polymer to be dramatically different from the non-templated polymers and to be similar in size and shape to the Co(II)-monomer precursors, emphasizing the role of the template ions in directing the formation of the resulting polymer. This guest-templated approach requires no functionalization of the generic monomer and represents a promising synthetic route to high-capacity ion adsorbents for water purification and aqueous separations.

4.
Adv Mater ; 33(24): e2008683, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33960040

RESUMO

Self-assembly of iron oxide nanoparticles (IONPs) into 1D chains is appealing, because of their biocompatibility and higher mobility compared to 2D/3D assemblies while traversing the circulatory passages and blood vessels for in vivo biomedical applications. In this work, parameters such as size, concentration, composition, and magnetic field, responsible for chain formation of IONPs in a dispersion as opposed to spatially confining substrates, are examined. In particular, the monodisperse 27 nm IONPs synthesized by an extended LaMer mechanism are shown to form chains at 4 mT, which are lengthened with applied field reaching 270 nm at 2.2 T. The chain lengths are completely reversible in field. Using a combination of scattering methods and reverse Monte Carlo simulations the formation of chains is directly visualized. The visualization of real-space IONPs assemblies formed in dispersions presents a novel tool for biomedical researchers. This allows for rapid exploration of the behavior of IONPs in solution in a broad parameter space and unambiguous extraction of ​the parameters of the equilibrium structures. Additionally, it can be extended to study novel assemblies formed by more complex geometries of IONPs.


Assuntos
Compostos Férricos , Nanopartículas de Magnetita , Tamanho da Partícula
5.
Angew Chem Int Ed Engl ; 59(36): 15487-15491, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32449976

RESUMO

Controlling the formation of nanosized branched nanoparticles with high uniformity is one of the major challenges in synthesizing nanocatalysts with improved activity and stability. Using a cubic-core hexagonal-branch mechanism to form highly monodisperse branched nanoparticles, we vary the length of the nickel branches. Lengthening the nickel branches, with their high coverage of active facets, is shown to improve activity for electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF), as an example for biomass conversion.


Assuntos
Furaldeído/análogos & derivados , Nanopartículas Metálicas/química , Níquel/química , Biomassa , Catálise , Furaldeído/química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
6.
ACS Appl Mater Interfaces ; 12(17): 19504-19510, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32250585

RESUMO

The magnetic susceptibility of NOx-loaded RE-DOBDC (rare earth (RE): Y, Eu, Tb, Yb; DOBDC: 2,5-dihydroxyterephthalic acid) metal-organic frameworks (MOFs) is unique to the MOF metal center. RE-DOBDC samples were synthesized, activated, and subsequently exposed to humid NOx. Each NOx-loaded MOF was characterized by powder X-ray diffraction, and the magnetic characteristics were probed by using a VersaLab vibrating sample magnetometer (VSM). Lanthanide-containing RE-DOBDC (Eu, Tb, Yb) are paramagnetic with a reduction in paramagnetism upon adsorption of NOx. Y-DOBDC has a diamagnetic moment with a slight reduction upon adsorption of NOx. The magnetic susceptibility of the MOF is determined by the magnetism imparted by the framework metal center. The electronic population of orbitals contributes to determining the extent of magnetism and change with NOx (electron acceptor) adsorption. Eu-DOBDC results in the largest mass magnetization change upon adsorption of NOx due to more available unpaired f electrons. Experimental changes in magnetic moment were supported by density functional theory (DFT) simulations of NOx adsorbed in lanthanide Eu-DOBDC and transition metal Y-DOBDC MOFs.

7.
J Nanobiotechnology ; 18(1): 35, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070354

RESUMO

BACKGROUND: Novel methods are necessary to reduce morbidity and mortality of patients suffering from infections with Pseudomonas aeruginosa. Being the most common infectious species of the Pseudomonas genus, P. aeruginosa is the primary Gram-negative etiology responsible for nosocomial infections. Due to the ubiquity and high adaptability of this species, an effective universal treatment method for P. aeruginosa infection still eludes investigators, despite the extensive research in this area. RESULTS: We report bacterial inhibition by iron-oxide (nominally magnetite) nanoparticles (NPs) alone, having a mean hydrodynamic diameter of ~ 16 nm, as well as alginate-capped iron-oxide NPs. Alginate capping increased the average hydrodynamic diameter to ~ 230 nm. We also investigated alginate-capped iron-oxide NP-drug conjugates, with a practically unchanged hydrodynamic diameter of ~ 232 nm. Susceptibility and minimum inhibitory concentration (MIC) of the NPs, NP-tobramycin conjugates, and tobramycin alone were determined in the PAO1 bacterial colonies. Investigations into susceptibility using the disk diffusion method were done after 3 days of biofilm growth and after 60 days of growth. MIC of all compounds of interest was determined after 60-days of growth, to ensure thorough establishment of biofilm colonies. CONCLUSIONS: Positive inhibition is reported for uncapped and alginate-capped iron-oxide NPs, and the corresponding MICs are presented. We report zero susceptibility to iron-oxide NPs capped with polyethylene glycol, suggesting that the capping agent plays a major role in enabling bactericidal ability in of the nanocomposite. Our findings suggest that the alginate-coated nanocomposites investigated in this study have the potential to overcome the bacterial biofilm barrier. Magnetic field application increases the action, likely via enhanced diffusion of the iron-oxide NPs and NP-drug conjugates through mucin and alginate barriers, which are characteristic of cystic-fibrosis respiratory infections. We demonstrate that iron-oxide NPs coated with alginate, as well as alginate-coated magnetite-tobramycin conjugates inhibit P. aeruginosa growth and biofilm formation in established colonies. We have also determined that susceptibility to tobramycin decreases for longer culture times. However, susceptibility to the iron-oxide NP compounds did not demonstrate any comparable decrease with increasing culture time. These findings imply that iron-oxide NPs are promising lower-cost alternatives to silver NPs in antibacterial coatings, solutions, and drugs, as well as other applications in which microbial abolition or infestation prevention is sought.


Assuntos
Alginatos/química , Antibacterianos/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Infecções por Pseudomonas/tratamento farmacológico , Tobramicina/química , Antibacterianos/farmacologia , Biofilmes , Fibrose Cística , Portadores de Fármacos/química , Desenho de Fármacos , Quimioterapia Combinada , Humanos , Campos Magnéticos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/química , Prata/farmacologia , Propriedades de Superfície , Tobramicina/farmacologia
8.
Small ; 15(17): e1804577, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30913370

RESUMO

Branched nanoparticles are one of the most promising nanoparticle catalysts as their branch sizes and surfaces can be tuned to enable both high activity and stability. Understanding how the crystallinity and surface facets of branched nanoparticles affect their catalytic performance is vital for further catalyst development. In this work, a synthesis is developed to form highly branched ruthenium (Ru) nanoparticles with control of crystallinity. It is shown that faceted Ru branched nanoparticles have improved stability and activity in the oxygen evolution reaction (OER) compared with polycrystalline Ru nanoparticles. This work achieves a low 180 mV overpotential at 10 mA cm-2 for hours, demonstrating that record-high stability for Ru nanocrystals can be achieved while retaining high activity for OER. The superior electrocatalytic performance of faceted Ru branched nanoparticles is ascribed to the lower Ru dissolution rate under OER conditions due to low-index facets on the branch surfaces.

9.
Science ; 362(6413)2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30361339

RESUMO

Soft magnetic materials are key to the efficient operation of the next generation of power electronics and electrical machines (motors and generators). Many new materials have been introduced since Michael Faraday's discovery of magnetic induction, when iron was the only option. However, as wide bandgap semiconductor devices become more common in both power electronics and motor controllers, there is an urgent need to further improve soft magnetic materials. These improvements will be necessary to realize the full potential in efficiency, size, weight, and power of high-frequency power electronics and high-rotational speed electrical machines. Here we provide an introduction to the field of soft magnetic materials and their implementation in power electronics and electrical machines. Additionally, we review the most promising choices available today and describe emerging approaches to create even better soft magnetic materials.

10.
Angew Chem Int Ed Engl ; 57(26): 7678-7681, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29573528

RESUMO

We present a method for the synthesis and precise size control of magnetic nanoparticles in a reversible magnetic agglomeration mechanism. In this approach, nanoparticles nucleate and grow until a critical susceptibility is reached, in which magnetic attraction overcomes dispersive forces, leading to agglomeration and precipitation. This phase change in the system arrests nanoparticle growth and gives true thermodynamic control over the size of nanoparticles. We then show that increasing the alkyl chain length of the surfactant, and hence increasing steric stabilization, allows nanoparticles to grow to larger sizes before agglomeration occurs. Therefore, simply by choosing the correct surfactant, the size and magnetic properties of iron nanoparticles can be tailored for a particular application. With the continuous addition of the precursor solution, we can repeat the steps of nucleation, growth, and magnetic agglomeration indefinitely, making the approach suitable for large scale syntheses.

11.
Small ; 14(17): e1703615, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29573554

RESUMO

A method for creating nanoparticles directly from bulk metal by applying ultrasound to the surface in the presence of a two-part surfactant system is presented. Implosive collapse of cavitation bubbles near the bulk metal surface generates powerful microjets, leading to material ejection. This liberated material is captured and stabilized by a surfactant bilayer in the form of nanoparticles. The method is characterized in detail using gold, but is also demonstrated on other metals and alloys, and is generally applicable. It is shown that nanoparticles can be produced regardless of the bulk metal form factor, and the method is extended to an environmentally important problem, the reclamation of gold from an electronic waste stream.

12.
ACS Appl Mater Interfaces ; 10(5): 5050-5060, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29299907

RESUMO

This article describes the three-dimensional self-assembly of monodisperse colloidal magnetite nanoparticles (NPs) from a dilute water-based ferrofluid onto a silicon surface and the dependence of the resultant magnetic structure on the applied field. The NPs assemble into close-packed layers on the surface followed by more loosely packed ones. The magnetic field-dependent magnetization of the individual NP layers depends on both the rotational freedom of the layer and the magnetization of the adjacent layers. For layers in which the NPs are more free to rotate, the easy axis of the NP can readily orient along the field direction. In more dense packing, free rotation of the NPs is hampered, and the NP ensembles likely build up quasi-domain states to minimize energy, which leads to lower magnetization in those layers. Detailed analysis of polarized neutron reflectometry data together with model calculations of the arrangement of the NPs within the layers and input from small-angle scattering measurements provide full characterization of the core/shell NP dimensions, degree of chaining, arrangement of the NPs within the different layers, and magnetization depth profile.

13.
ACS Omega ; 3(1): 503-508, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457908

RESUMO

A magnetically active Fe3O4/poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PBD) nanocomposite is formed by the encapsulation of magnetite nanoparticles with a short-chain amphiphilic block copolymer. This material is then incorporated into the self-assembly of higher order polymer architectures, along with an organic pigment, to yield biosynthetic, bifunctional optical and magnetically active Fe3O4/bacteriochlorophyll c/PEO-b-PBD polymeric chlorosomes.

14.
Nanoscale ; 9(20): 6632-6637, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28304414

RESUMO

The most commonly used method for the formation of well-defined iron and iron-containing heterometallic nanoparticles is the thermal decomposition of iron pentacarbonyl (Fe(CO)5). However, iron pentacarbonyl is highly toxic and volatile, which introduces safety concerns and drastically diminishes control over the reaction stoichiometry. Here we alleviate these issues by beginning with an easy-to-handle solid, triiron dodecacarbonyl (Fe3(CO)12). The issue of poor solubility of this cluster is addressed by its reaction with amine, which renders the cluster fully soluble in common high boiling point solvents. This reaction generates non-volatile anionic iron carbonyl species in solution which are subsequently used as the nanoparticle precursor. We demonstrate that the thermolysis of this novel precursor solution yields well-defined Fe, Fe1-xCox, and Fe1-xPtx nanoparticles. In addition, the same approach overcomes the solubility issue of another poorly soluble iron carbonyl compound, diiron nonacarbonyl (Fe2(CO)9). By using these precursors in an array of nanoparticle-forming reactions, we demonstrate a convenient replacement for the commonly used Fe(CO)5, producing particles of similar quality, but without the drawbacks of the precursor volatility and high toxicity.

15.
Chempluschem ; 82(3): 347-351, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962034

RESUMO

Core-shell nanostructures are promising candidates for the next generation of catalysts due to synergistic effects which can arise from having two active species in close contact, leading to increased activity. Likewise, catalysts displaying added functionality, such as a magnetic response, can have increased scientific and industrial potential. Here, Pd/Fe3 O4 core-shell nanowire clusters are synthesized and applied as hydrogenation catalysts for an industrially important hydrogenation reaction: the conversion of acetophenone to 1-phenylethanol. During synthesis, the palladium nanowires self-assemble into clusters which act as a high-surface-area framework for the growth of a magnetic iron oxide shell. This material demonstrates excellent catalytic activity due to the presence of palladium while the strong magnetic properties provided by the iron oxide shell enable facile catalyst recovery.

16.
Sci Rep ; 6: 30810, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27478156

RESUMO

Extensive study of photorefractive polymeric composites photosensitized with semiconductor nanocrystals has yielded data indicating that the inclusion of such nanocrystals enhances the charge-carrier mobility, and subsequently leads to a reduction in the photorefractive response time. Unfortunately, the included nanocrystals may also act as a source of deep traps, resulting in diminished diffraction efficiencies as well as reduced two beam coupling gain coefficients. Nonetheless, previous studies indicate that this problem is mitigated through the inclusion of semiconductor nanocrystals possessing a relatively narrow band-gap. Here, we fully exploit this property by doping PbS nanocrystals into a newly formulated photorefractive composite based on molecular triphenyldiamine photosensitized with C60. Through this approach, response times of 399 µs are observed, opening the door for video and other high-speed applications. It is further demonstrated that this improvement in response time occurs with little sacrifice in photorefractive efficiency, with internal diffraction efficiencies of 72% and two-beam-coupling gain coefficients of 500 cm(-1) being measured. A thorough analysis of the experimental data is presented, supporting the hypothesized mechanism of enhanced charge mobility without the accompaniment of superfluous traps. It is anticipated that this approach can play a significant role in the eventual commercialization of this class of materials.

17.
ACS Macro Lett ; 5(1): 149-153, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35668590

RESUMO

Ternary polymer brushes consisting of polystyrene, poly(methyl methacrylate), and poly(4-vinylpyridine) have been synthesized. These brushes laterally phase separate into several distinct phases and can be tailored by altering the relative polymer composition. Self-consistent field theory has been used to predict the phase diagram and model both the horizontal and vertical phase behavior of the polymer brushes. All phase behaviors observed experimentally correlate well with the theoretical model.

18.
Biomed Tech (Berl) ; 60(5): 445-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26035107

RESUMO

BACKGROUND: Here we describe superparamagnetic relaxometry (SPMR), a technology that utilizes highly sensitive magnetic sensors and superparamagnetic nanoparticles for cancer detection. Using SPMR, we sensitively and specifically detect nanoparticles conjugated to biomarkers for various types of cancer. SPMR offers high contrast in vivo, as there is no superparamagnetic background, and bones and tissue are transparent to the magnetic fields. METHODS: In SPMR measurements, a brief magnetizing pulse is used to align superparamagnetic nanoparticles of a discrete size. Following the pulse, an array of superconducting quantum interference detectors (SQUID) sensors detect the decaying magnetization field. NP size is chosen so that, when bound, the induced field decays in seconds. They are functionalized with specific biomarkers and incubated with cancer cells in vitro to determine specificity and cell binding. For in vivo experiments, functionalized NPs are injected into mice with xenograft tumors, and field maps are generated to localize tumor sites. RESULTS: Superparamagnetic NPs developed here have small size dispersion. Cell incubation studies measure specificity for different cell lines and antibodies with very high contrast. In vivo animal measurements verify SPMR localization of tumors. Our results indicate that SPMR possesses sensitivity more than 2 orders of magnitude better than previously reported.


Assuntos
Biomarcadores Tumorais/análise , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Nanopartículas de Magnetita , Neoplasias Experimentais/química , Neoplasias Experimentais/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Nus , Camundongos SCID , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
ACS Nano ; 8(5): 4799-804, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24702482

RESUMO

Metal nanoparticles exhibit unique optical characteristics in visible spectra produced by local surface plasmon resonance (SPR) for a wide range of optical and electronic applications. We report the synthesis of poly(N-isopropylacrylamide) surfactant (PNIPAM-C18)-functionalized metal nanoparticles and ordered superlattice arrays through an interfacial self-assembly process. The method is simple and reliable without using complex chemistry. The PNIPAM-C18-functionalized metal nanoparticles and ordered superlattices exhibit responsive behavior modulated by external temperature and relative humidity (RH). In situ grazing-incidence small-angle X-ray scattering studies confirmed that the superlattice structure of PNIPAM-C18 surfactant-functionalized nanoparticle arrays shrink and spring back reversibly based on external thermal and RH conditions, which allow flexible manipulation of interparticle spacing for tunable SPR. PNIPAM-C18 surfactants play a key role in accomplishing this responsive property. The ease of fabrication of the responsive nanostructure facilitates investigation of nanoparticle coupling that depends on interparticle separation for potential applications in chemical and biological sensors as well as energy storage devices.


Assuntos
Resinas Acrílicas/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Prata/química , Técnicas Biossensoriais , Ouro/química , Temperatura Alta , Teste de Materiais , Metais/química , Micelas , Microscopia Eletrônica de Transmissão , Poliestirenos/química , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Tensoativos/química , Água/química , Raios X
20.
Langmuir ; 29(20): 6109-15, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23642033

RESUMO

This work describes a technique for forming high-density arrays and patterns of membrane-bound proteins through binding to a curvature-organized compositional pattern of metal-chelating lipids (Cu(2+)-DOIDA or Cu(2+)-DSIDA). In this bottom-up approach, the underlying support is an e-beam formed, square lattice pattern of hemispheres. This curvature pattern sorts Cu(2+)-DOIDA to the 200 nm hemispherical lattice sites of a 600 nm × 600 nm unit cell in Ld - Lo phase separated lipid multibilayers. Binding of histidine-tagged green fluorescent protein (His-GFP) creates a high density array of His-GFP-bound pixels localized to the square lattice sites. In comparison, the negative pixel pattern is created by sorting Cu(2+)-DSIDA in Ld - Lß' phase separated lipid multibilayers to the flat grid between the lattice sites followed by binding to His-GFP. Lattice defects in the His-GFP pattern lead to interesting features such as pattern circularity. We also observe defect-free arrays of His-GFP that demonstrate perfect arrays can be formed by this method suggesting the possibility of using this approach for the localization of various active molecules to form protein, DNA, or optically active molecular arrays.


Assuntos
Proteínas de Fluorescência Verde/química , Lipídeos/química , Proteínas de Membrana/química , Cobre/química , Histidina/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...