Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacokinet Pharmacodyn ; 51(2): 169-185, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37930506

RESUMO

In-vitro to in-vivo correlations (IVIVC), relating in-vitro parameters like IC50 to in-vivo drug exposure in plasma and tumour growth, are widely used in oncology for experimental design and dose decisions. However, they lack a deeper understanding of the underlying mechanisms. Our paper therefore focuses on linking empirical IVIVC relations for small-molecule kinase inhibitors with a semi-mechanistic tumour-growth model. We develop an approach incorporating parameters like the compound's peak-trough ratio (PTR), Hill coefficient of in-vitro dose-response curves, and xenograft-specific properties. This leads to formulas for determining efficacious doses for tumor stasis under linear pharmacokinetics equivalent to traditional empirical IVIVC relations, but enabling more systematic analysis. Our findings reveal that in-vivo xenograft-specific parameters, specifically the growth rate (g) and decay rate (d), along with the average exposure, are generally more significant determinants of tumor stasis and effective dose than the compound's peak-trough ratio. However, as the Hill coefficient increases, the dependency of tumor stasis on the PTR becomes more pronounced, indicating that the compound is more influenced by its maximum or trough values rather than the average exposure. Furthermore, we discuss the translation of our method to predict population dose ranges in clinical studies and propose a resistance mechanism that solely relies on specific in-vivo xenograft parameters instead of IC50 exposure coverage. In summary, our study aims to provide a more mechanistic understanding of IVIVC relations, emphasizing the importance of xenograft-specific parameters and PTR on tumor stasis.


Assuntos
Modelos Teóricos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico
2.
J Neurooncol ; 165(1): 91-100, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37907716

RESUMO

PURPOSE: Since glioma therapy is currently still limited until today, new treatment options for this heterogeneous group of tumours are of great interest. Eukaryotic initiation factors (eIFs) are altered in various cancer entities, including gliomas. The purpose of our study was to evaluate the potential of eIFs as novel targets in glioma treatment. METHODS: We evaluated eIF protein expression and regulation in 22 glioblastoma patient-derived xenografts (GBM PDX) after treatment with established cytostatics and with regards to mutation profile analyses of GBM PDX. RESULTS: We observed decreased expression of several eIFs upon temozolomide (TMZ) treatment independent from the phosphatidylinositol 3-kinase (PI3K)/ AKT/ mammalian target of the rapamycin (mTOR) signalling pathway. These effects of TMZ treatment were not present in TMZ-resistant PDX. Combination therapy of regorafenib and TMZ re- established the eIF/AKT/mTOR axis. CONCLUSION: Our study provides novel insights into chemotherapeutic effects on eIF regulation in gliomas and suggests that eIFs are interesting candidates for future research to improve glioma therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/uso terapêutico , Temozolomida/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Dacarbazina/uso terapêutico , Dacarbazina/farmacologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Serina-Treonina Quinases TOR/metabolismo
3.
Front Pharmacol ; 14: 1272058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900154

RESUMO

The effect of combination therapies in many cancers has often been shown to be superior to that of monotherapies. This success is commonly attributed to drug synergies. Combinations of two (or more) drugs in xenograft tumor growth inhibition (TGI) studies are typically designed at fixed doses for each compound. The available methods for assessing synergy in such study designs are based on combination indices (CI) and model-based analyses. The former methods are suitable for screening exercises but are difficult to verify in in vivo studies, while the latter incorporate drug synergy in semi-mechanistic frameworks describing disease progression and drug action but are unsuitable for screening. In the current study, we proposed the empirical radius additivity (Rad-add) score, a novel CI for synergy detection in fixed-dose xenograft TGI combination studies. The Rad-add score approximates model-based analysis performed using the semi-mechanistic constant-radius growth TGI model. The Rad-add score was compared with response additivity, defined as the addition of the two response values, and the bliss independence model in combination studies derived from the Novartis PDX dataset. The results showed that the bliss independence and response additivity models predicted synergistic interactions with high and low probabilities, respectively. The Rad-add score predicted synergistic probabilities that appeared to be between those predicted with response additivity and the Bliss model. We believe that the Rad-add score is particularly suitable for assessing synergy in the context of xenograft combination TGI studies, as it combines the advantages of CI approaches suitable for screening exercises with those of semi-mechanistic TGI models based on a mechanistic understanding of tumor growth.

4.
Elife ; 122023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732732

RESUMO

Cytotoxic CD8 +T lymphocytes (CTLs) are key players of adaptive anti-tumor immunity based on their ability to specifically recognize and destroy tumor cells. Many cancer immunotherapies rely on unleashing CTL function. However, tumors can evade killing through strategies which are not yet fully elucidated. To provide deeper insight into tumor evasion mechanisms in an antigen-dependent manner, we established a human co-culture system composed of tumor and primary immune cells. Using this system, we systematically investigated intrinsic regulators of tumor resistance by conducting a complementary CRISPR screen approach. By harnessing CRISPR activation (CRISPRa) and CRISPR knockout (KO) technology in parallel, we investigated gene gain-of-function as well as loss-of-function across genes with annotated function in a colon carcinoma cell line. CRISPRa and CRISPR KO screens uncovered 187 and 704 hits, respectively, with 60 gene hits overlapping between both. These data confirmed the role of interferon-γ (IFN-γ), tumor necrosis factor α (TNF-α) and autophagy pathways and uncovered novel genes implicated in tumor resistance to killing. Notably, we discovered that ILKAP encoding the integrin-linked kinase-associated serine/threonine phosphatase 2 C, a gene previously unknown to play a role in antigen specific CTL-mediated killing, mediate tumor resistance independently from regulating antigen presentation, IFN-γ or TNF-α responsiveness. Moreover, our work describes the contrasting role of soluble and membrane-bound ICAM-1 in regulating tumor cell killing. The deficiency of membrane-bound ICAM-1 (mICAM-1) or the overexpression of soluble ICAM-1 (sICAM-1) induced resistance to CTL killing, whereas PD-L1 overexpression had no impact. These results highlight the essential role of ICAM-1 at the immunological synapse between tumor and CTL and the antagonist function of sICAM-1.


Assuntos
Neoplasias do Colo , Linfócitos T Citotóxicos , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Fator de Necrose Tumoral alfa , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Interferon gama/farmacologia , Morte Celular
5.
Am J Respir Cell Mol Biol ; 69(4): 422-440, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37411041

RESUMO

Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis. Yet in this model, it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Old mice showed incomplete and delayed lung function recovery 8 weeks after bleomycin instillation. This shift in structural and functional repair in old bleomycin-treated mice was reflected in a temporal shift in gene and protein expression. We reveal gene signatures and signaling pathways that underpin the lung repair process. Importantly, the downregulation of WNT, BMP, and TGFß antagonists Frzb, Sfrp1, Dkk2, Grem1, Fst, Fstl1, and Inhba correlated with lung function improvement. Those genes constitute a network with functions in stem cell pathways, wound, and pulmonary healing. We suggest that insufficient and delayed downregulation of those antagonists during fibrosis resolution in old mice explains the impaired regenerative outcome. Together, we identified signaling pathway molecules with relevance to lung regeneration that should be tested in-depth experimentally as potential therapeutic targets for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Transcriptoma , Camundongos , Animais , Transcriptoma/genética , Proteômica , Pulmão , Bleomicina , Camundongos Endogâmicos C57BL
6.
Am J Respir Cell Mol Biol ; 68(4): 366-380, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36227799

RESUMO

Profibrotic and prohomeostatic macrophage phenotypes remain ill-defined, both in vivo and in vitro, impeding the successful development of drugs that reprogram macrophages as an attractive therapeutic approach to manage fibrotic disease. The goal of this study was to reveal profibrotic and prohomeostatic macrophage phenotypes that could guide the design of new therapeutic approaches targeting macrophages to treat fibrotic disease. This study used nintedanib, a broad kinase inhibitor approved for idiopathic pulmonary fibrosis, to dissect lung macrophage phenotypes during fibrosis-linked inflammation by combining in vivo and in vitro bulk and single-cell RNA-sequencing approaches. In the bleomycin model, nintedanib drove the expression of IL-4/IL-13-associated genes important for tissue regeneration and repair at early and late time points in lung macrophages. These findings were replicated in vitro in mouse primary bone marrow-derived macrophages exposed to IL-4/IL-13 and nintedanib. In addition, nintedanib promoted the expression of IL-4/IL-13 pathway genes in human macrophages in vitro. The molecular mechanism was connected to inhibition of the colony stimulating factor 1 (CSF1) receptor in both human and mouse macrophages. Moreover, nintedanib counterbalanced the effects of TNF on IL-4/IL-13 in macrophages to promote expression of IL-4/IL-13-regulated tissue repair genes in fibrotic contexts in vivo and in vitro. This study demonstrates that one of nintedanib's antifibrotic mechanisms is to increase IL-4 signaling in macrophages through inhibition of the CSF1 receptor, resulting in the promotion of tissue repair phenotypes.


Assuntos
Fibrose Pulmonar Idiopática , Indóis , Macrófagos , Indóis/farmacologia , Animais , Camundongos , Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Interleucina-4/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
7.
Front Immunol ; 12: 754316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721430

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid progenitor cells that dampen overwhelming adaptive immune responses through multiple mechanisms and are recognized as an attractive novel immune intervention therapy for counteracting the destructive effects of graft- versus -host disease (GVHD) developing after allogeneic bone marrow transplantation (BMT). MDSCs can be produced in great numbers for cellular therapy, but they present a mixture of subsets whose functions in GVHD prevention are undefined. Here, we generated MDSCs in vitro from murine BM cells in the presence of GM-CSF and defined the integrin CD11c as a marker to subdivide MDSCs into two functional subgroups: CD11b+CD11c+ and CD11b+CD11c- MDSCs. Isolated CD11b+CD11c+ and CD11b+CD11c- MDSCs both inhibited alloantigen-stimulated T-cell proliferation in vitro, although CD11b+CD11c+ MDSCs were more efficient and expressed higher levels of different immunosuppressive molecules. Likewise, expression of surface markers such as MHC class II, CD80, CD86, or PD-L1 further delineated both subsets. Most importantly, only the adoptive transfer of CD11b+CD11c+ MDSCs into a single MHC class I-disparate allogeneic BMT model prevented GVHD development and strongly decreased disease-induced mortality, while CD11b+CD11c- MDSCs were totally ineffective. Surprisingly, allogeneic T-cell homing and expansion in lymphatic and GVHD target organs were not affected by cotransplanted CD11b+CD11c+ MDSCs indicating a clear contradiction between in vitro and in vivo functions of MDSCs. However, CD11b+CD11c+ MDSCs shifted immune responses towards type 2 immunity reflected by increased Th2-specific cytokine expression of allogeneic T cells. Induction of type 2 immunity was mandatory for GVHD prevention, since CD11b+CD11c+ MDSCs were ineffective if recipients were reconstituted with STAT6-deficient T cells unable to differentiate into Th2 cells. Most importantly, the beneficial graft- versus -tumor (GVT) effect was maintained in the presence of CD11b+CD11c+ MDSCs since syngeneic tumor cells were efficiently eradicated. Strong differences in the transcriptomic landscape of both subpopulations underlined their functional differences. Defining CD11b+CD11c+ MDSCs as the subset of in vitro-generated MDSCs able to inhibit GVHD development might help to increase efficiency of MDSC therapy and to further delineate relevant target molecules and signaling pathways responsible for GVHD prevention.


Assuntos
Antígenos CD11/análise , Antígeno CD11b/análise , Doença Enxerto-Hospedeiro/prevenção & controle , Células Supressoras Mieloides/imunologia , Aloenxertos , Animais , Transplante de Medula Óssea/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ontologia Genética , Efeito Enxerto vs Tumor , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Imunidade Celular , Separação Imunomagnética , Camundongos , Células Supressoras Mieloides/química , Células Supressoras Mieloides/classificação , Células Supressoras Mieloides/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Quimera por Radiação , Subpopulações de Linfócitos T/imunologia , Transcriptoma
8.
Sci Rep ; 11(1): 14849, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290311

RESUMO

More than 70% of colorectal, prostate, ovarian, pancreatic and breast cancer specimens show expression of CD276 (B7-H3), a potential immune checkpoint family member. Several studies have shown that high CD276 expression in cancer cells correlates with a poor clinical prognosis. This has been associated with the presence of lower tumor infiltrating leukocytes. Among those, tumor-associated macrophages can comprise up to 50% of the tumor mass and are thought to support tumor growth through various mechanisms. However, a lack of information on CD276 function and interaction partner(s) impedes rigorous evaluation of CD276 as a therapeutic target in oncology. Therefore, we aimed to understand the relevance of CD276 in tumor-macrophage interaction by employing a 3D spheroid coculture system with human cells. Our data show a role for tumor-expressed CD276 on the macrophage recruitment into the tumor spheroid, and also in regulation of the extracellular matrix modulator PAI-1. Furthermore, our experiments focusing on macrophage-expressed CD276 suggest that the antibody-dependent CD276 engagement triggers predominantly inhibitory signaling networks in human macrophages.


Assuntos
Antígenos B7/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica/genética , Macrófagos/patologia , Neoplasias/patologia , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Antígenos B7/genética , Antígenos B7/metabolismo , Linhagem Celular Tumoral , Humanos , Leucócitos/patologia , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/terapia , Prognóstico , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
Front Cell Dev Biol ; 9: 656867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937256

RESUMO

Macrophages are pivotal effectors of host immunity and regulators of tissue homeostasis. Understanding of human macrophage biology has been hampered by the lack of reliable and scalable models for cellular and genetic studies. Human induced pluripotent stem cell (hiPSC)-derived monocytes and macrophages, as an unlimited source of subject genotype-specific cells, will undoubtedly play an important role in advancing our understanding of macrophage biology and implication in human diseases. In this study, we present a fully optimized differentiation protocol of hiPSC-derived monocytes and granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). We present characterization of iPSC-derived myeloid lineage cells at phenotypic, functional, and transcriptomic levels, in comparison with corresponding subsets of peripheral blood-derived cells. We also highlight the application of hiPSC-derived monocytes and macrophages as a gene-editing platform for functional validation in research and drug screening, and the study also provides a reference for cell therapies.

10.
Cell Commun Signal ; 17(1): 46, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101051

RESUMO

BACKGROUND: Interleukin-6 is a pleiotropic cytokine with high clinical relevance and an important mediator of cellular communication, orchestrating both pro- and anti-inflammatory processes. Interleukin-6-induced signalling is initiated by binding of IL-6 to the IL-6 receptor α and subsequent binding to the signal transducing receptor subunit gp130. This active receptor complex initiates signalling through the Janus kinase/signal transducer and activator of transcription pathway. Of note, IL-6 receptor α exists in a soluble and a transmembrane form. Binding of IL-6 to membrane-bound IL-6 receptor α induces anti-inflammatory classic signalling, whereas binding of IL-6 to soluble IL-6 receptor α induces pro-inflammatory trans-signalling. Trans-signalling has been described to be markedly stronger than classic signalling. Understanding the molecular mechanisms that drive differences between trans- and classic signalling is important for the design of trans-signalling-specific therapies. These differences will be addressed here using a combination of dynamic mathematical modelling and molecular biology. METHODS: We apply an iterative systems biology approach using set-based modelling and validation approaches combined with quantitative biochemical and cell biological analyses. RESULTS: The combination of experimental analyses and dynamic modelling allows to relate the observed differences between IL-6-induced trans- and classic signalling to cell-type specific differences in the expression and ratios of the individual subunits of the IL-6 receptor complex. Canonical intracellular Jak/STAT signalling is indifferent in IL-6-induced trans- and classic signalling. CONCLUSION: This study contributes to the understanding of molecular mechanisms of IL-6 signal transduction and underlines the power of combined dynamical modelling, model-based validation and biological experiments. The opposing pro- and anti-inflammatory responses initiated by IL-6 trans- and classic signalling depend solely on the expression ratios of the subunits of the entire receptor complex. By pointing out the importance of the receptor expression ratio for the strength of IL-6 signalling this study lays a foundation for future precision medicine approaches that aim to selectively block pro-inflammatory trans-signalling. Furthermore, the derived models can be used for future therapy design.


Assuntos
Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Modelos Biológicos , Receptores de Interleucina-6/metabolismo , Transdução de Sinais , Animais , Receptor gp130 de Citocina/genética , Humanos , Interleucina-6/genética , Receptores de Interleucina-6/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-29994183

RESUMO

INTRODUCTION: NLRP3-dependent inflammasome signalling is a key pathway during inflammatory processes and its deregulation is implicated in several diseases. NLRP3-inflammasome pathway activation leads to the rapid, phosphorylation-driven NF$\kappa$κB-pathway signalling, subsequently proceeds via slower transcription/translation process for producing pro-enzymes, and finally leads to the medium-speed enzymatic activation of the central inflammatory mediator IL-$1\beta$1ß[1] . We here were interested in how the timing of the rate-limiting step of transcription/translation and the presence of a positive and negative auto-regulation would pose conditions for meaningful and stable IL-$1\beta$1ß-activation. METHODS: We extracted the essential topology of the inflammasome pathway network using a linear chain of first-order reaction and a second-order reaction for inhibitory feedback. We then performed an analytical treatment of the resulting ODE set to obtain closed-form formulae. We therefore looked for the steady states and characterized their stability by using a Jacobian-based, local analysis. We employed the Small Gain Theorem from Control Theory as recently applied by us [2] and the Gershgorin Circle Theorem to obtain mathematically exact conditions for a positive ON state and stabilities for ON and OFF steady states. RESULTS: We identified an ON- and one OFF- steady state whose properties we characterized in terms of the kinetic parameters by closed-form formulae. We found that under the assumption of a first-order information flow through the network, the existence of a biologically reasonable ON steady state required the simultaneous presence of the positive and the negative feedback. Assuming non-competitivity between IL-$1\beta$1ß entities binding to different receptors, we found that a minimum kinetics for protein production is required to sustain a steady state with IL-$1\beta$1ß activation. Assuming competitivity between IL-$1\beta$1ß entities introduced additional restrictions on the maximum protein production speed to guarantee a biologically reasonable ON steady state. Finally, for both models, we ruled out bistability, suggesting that IL-$1\beta$1ß activation would undergo a smooth change upon alterations of its parameters. CONCLUSION: Exemplified by the core pathway of NLRP3-inflammasome signalling, we here demonstrate that a mostly linear activation cascade containing an intermediate rate limiting step poses kinetic restrictions on this step and requires positive and negative autoregulation for obtaining a meaningful ON steady state. Due to the generality of our framework, our results are important for a wide class of receptor mediated-pathways, where a fast initial phosphorylation cascade is followed by a (slower) transcriptional response and subsequent autoregulation. Our results may further provide important design principles for synthetic biological networks involving biochemical activation and transcription/translation, by relating timing considerations and autoregulation to stable pathway activation.


Assuntos
Biologia Computacional/métodos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia , Retroalimentação Fisiológica , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Biossíntese de Proteínas/fisiologia , Biologia Sintética
12.
Anal Chim Acta ; 1041: 122-130, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30340684

RESUMO

Detection methods that do not rely on the amplification of DNA but can reach sensitivity, specificity and throughput of gold standard methods, such as qPCR, have been extensively explored in recent years. Here, we present a hydrophilic-in-hydrophobic (HIH)-microwell array platform that empowers a panel of different amplification-free DNA bioassays: digital enzyme-linked oligonucleotide assay (ELONA), ligation-assisted (LA) digital ELONA and so-called 'analog' bioassays. We developed all three bioassays by using magnetic beads for capturing DNA target, followed by hybridization of enzyme-labelled detection probes and sealing of the built complexes into the femtoliter HIH microwells to achieve the fluorescent readout of single DNA molecules. With the optimized digital ELONA bioassay, we successfully detected 97 and 200 nt-long ssDNA molecules down to 68 and 92 aM, respectively, demonstrating extremely high sensitivity of the bioassay and its flexibility towards targets of different lengths. Importantly, we also proved that the same bioassay concept was suited to detect substantially higher concentrations of ssDNA (up to picomolar levels) by quantifying the total fluorescent intensity rather than counting fluorescent events for digital quantification. Finally, we advanced this concept towards LA digital ELONA capable of differentiating wildtype strands from those carrying single-point mutations even when the former were constituting only 1% of the DNA mixture and were present at 2 fM concentration. In conclusion, the developed platform showed remarkably high sensitivity, specificity and versatility for amplification-free detection of DNA and as such can be valuable for numerous applications in medical diagnostics, gene analysis, food safety and environmental monitoring.


Assuntos
DNA/análise , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sequência de Bases , Biotina/química , Biotina/metabolismo , DNA/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Magnetismo , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Estreptavidina/química , Estreptavidina/metabolismo , beta-Galactosidase/química , beta-Galactosidase/metabolismo
14.
Mol Omics ; 14(3): 181-196, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29770421

RESUMO

The rat cardiomyoblast cell line H9C2 has emerged as a valuable tool for studying cardiac development, mechanisms of disease and toxicology. We present here a rigorous proteomic analysis that monitored the changes in protein expression during differentiation of H9C2 cells into cardiomyocyte-like cells over time. Quantitative mass spectrometry followed by gene ontology (GO) enrichment analysis revealed that early changes in H9C2 differentiation are related to protein pathways of cardiac muscle morphogenesis and sphingolipid synthesis. These changes in the proteome were followed later in the differentiation time-course by alterations in the expression of proteins involved in cation transport and beta-oxidation. Studying the temporal profile of the H9C2 proteome during differentiation in further detail revealed eight clusters of co-regulated proteins that can be associated with early, late, continuous and transient up- and downregulation. Subsequent reactome pathway analysis based on these eight clusters further corroborated and detailed the results of the GO analysis. Specifically, this analysis confirmed that proteins related to pathways in muscle contraction are upregulated early and transiently, and proteins relevant to extracellular matrix organization are downregulated early. In contrast, upregulation of proteins related to cardiac metabolism occurs at later time points. Finally, independent validation of the proteomics results by immunoblotting confirmed hereto unknown regulators of cardiac structure and ionic metabolism. Our results are consistent with a 'function follows form' model of differentiation, whereby early and transient alterations of structural proteins enable subsequent changes that are relevant to the characteristic physiology of cardiomyocytes.

15.
J Biol Chem ; 293(18): 6762-6775, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29559558

RESUMO

Interleukin (IL-)6 is the major pro-inflammatory cytokine within the IL-6 family. IL-6 signals via glycoprotein 130 (gp130) and the membrane-bound or soluble IL-6 receptor (IL-6R), referred to as classic or trans-signaling, respectively. Whereas inflammation triggers IL-6 expression, eventually rising to nanogram/ml serum levels, soluble IL-6R (sIL-6R) and soluble gp130 (sgp130) are constitutively present in the upper nanogram/ml range. Calculations based on intermolecular affinities have suggested that systemic IL-6 is immediately trapped in IL-6·sIL-6R and IL-6·sIL-6R·sgp130 complexes, indicating that sIL-6R and sgp130 constitute a buffer system that increases the serum half-life of IL-6 or restricts systemic IL-6 signaling. However, this scenario has not been experimentally validated. Here, we quantified IL-6·sIL-6R and IL-6·sIL-6R·sgp130 complexes over a wide concentration range. The amounts of IL-6 used in this study reflect concentrations found during active inflammatory events. Our results indicated that most IL-6 is free and not complexed with sIL-6R or sgp130, indicating that the level of endogenous sgp130 in the bloodstream is not sufficient to block IL-6 trans-signaling via sIL-6R. Importantly, addition of the single-domain antibody VHH6, which specifically stabilizes IL-6·sIL-6R complexes but did not bind to IL-6 or sIL-6R alone, drove free IL-6 into IL-6·sIL-6R complexes and boosted trans-signaling but not classic signaling, demonstrating that endogenous sIL-6R has at least the potential to form complexes with IL-6. Our findings indicate that even though high concentrations of sIL-6R and sgp130 are present in human serum, the relative ratio of free IL-6 to IL-6·sIL-6R allows for simultaneous classic and trans-signaling.


Assuntos
Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Transdução de Sinais , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Humanos , Interleucina-6/sangue , Interleucina-6/imunologia , Receptores de Interleucina-6/sangue , Receptores de Interleucina-6/imunologia , Proteínas Recombinantes/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Anticorpos de Domínio Único/imunologia
16.
PLoS One ; 12(11): e0188343, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145487

RESUMO

Cell death induced by excessive glutamate receptor overactivation, excitotoxicity, has been implicated in several acute and chronic neurological disorders. While numerous studies have demonstrated the contribution of biochemically and genetically activated cell death pathways in excitotoxic injury, the factors mediating passive, excitotoxic necrosis are less thoroughly investigated. To address this question, we developed a high content screening (HCS) based assay to collect high volumes of quantitative cellular imaging data and elucidated the effects of intrinsic and external factors on excitotoxic necrosis and apoptosis. The analysis workflow consisted of robust nuclei segmentation, tracking and a classification algorithm, which enabled automated analysis of large amounts of data to identify and quantify viable, apoptotic and necrotic neuronal populations. We show that mouse cerebellar granule neurons plated at low or high density underwent significantly increased necrosis compared to neurons seeded at medium density. Increased extracellular Ca2+ sensitized neurons to glutamate-induced excitotoxicity, but surprisingly potentiated cell death mainly through apoptosis. We also demonstrate that inhibition of various cell death signaling pathways (including inhibition of calpain, PARP and AMPK activation) primarily reduced excitotoxic apoptosis. Excitotoxic necrosis instead increased with low extracellular glucose availability. Our study is the first of its kind to establish and implement a HCS based assay to investigate the contribution of external and intrinsic factors to excitotoxic apoptosis and necrosis.


Assuntos
Apoptose , Sobrevivência Celular , Cerebelo/citologia , Neurônios/citologia , Algoritmos , Animais , Cálcio/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados , Camundongos , Necrose , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
17.
BMC Cardiovasc Disord ; 17(1): 173, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28666417

RESUMO

BACKGROUND: Numerous recent studies suggest the potential of circulating MicroRNAs (miRs) in peripheral blood samples as diagnostic or prognostic markers for coronary artery disease (CAD), acute coronary syndrome (ACS) and heart failure (HF). However, literature often remains inconclusive regarding as to which markers are most indicative for which of the above diseases. This shortcoming is mainly due to the lack of a systematic analyses and absence of information on the functional pathophysiological role of these miRs and their target genes. METHODS: We here provide an-easy-to-use scoring approach to investigate the likelihood of regulation of several miRs and their target genes from literature by identifying consensus patterns of regulation. We therefore have screened over 1000 articles that study mRNA markers in cardiovascular and metabolic diseases, and devised a scoring algorithm to identify consensus means for miRs and genes regulation across several studies. We then aimed to identify differential markers between CAD, ACS and HF. RESULTS: We first identified miRs (miR-122, -126, -223, -138 and -370) as commonly regulated within a group of metabolic disease, while investigating cardiac-related pathologies (CAD, ACS, HF) revealed a decisive role of miR-1, -499, -208b, and -133a. Looking at differential markers between cardiovascular disease revealed miR-1, miR-208a and miR-133a to distinguish ACS and CAD to HF. Relating differentially expressed miRs to their putative gene targets using MirTarBase, we further identified HCN2/4 and LASP1 as potential markers of CAD and ACS, but not in HF. Likewise, BLC-2 was found oppositely regulated between CAD and HF. Interestingly, while studying overlap in target genes between CAD, ACS and HF only revealed little similarities, mapping these genes to gene ontology terms revealed a surprising similarity between CAD and ACS compared to HF. CONCLUSION: We conclude that our analysis using gene and miR scores allows the extraction of meaningful markers and the elucidation of differential pathological functions between cardiac diseases and provides a novel approach for literature screening for miR and gene consensus patterns. The analysis is easy to use and extendable upon further emergent literature as we provide an Excel sheet for this analysis to the community.


Assuntos
Síndrome Coronariana Aguda/sangue , MicroRNA Circulante/sangue , Doença da Artéria Coronariana/sangue , Perfilação da Expressão Gênica/métodos , Insuficiência Cardíaca/sangue , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/genética , MicroRNA Circulante/genética , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , Diagnóstico Diferencial , Regulação da Expressão Gênica , Marcadores Genéticos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Humanos , Valor Preditivo dos Testes
18.
J Mol Med (Berl) ; 95(3): 239-248, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27933370

RESUMO

The chemotherapeutic agent doxorubicin (DOX) has significantly increased survival rates of pediatric and adult cancer patients. However, 10% of pediatric cancer survivors will 10-20 years later develop severe dilated cardiomyopathy (DCM), whereby the exact molecular mechanisms of disease progression after this long latency time remain puzzling. We here revisit the hypothesis that elevated apoptosis signaling or its increased likelihood after DOX exposure can lead to an impairment of cardiac function and cause a cardiac dilation. Based on recent literature evidence, we first argue why a dilated phenotype can occur when little apoptosis is detected. We then review findings suggesting that mature cardiomyocytes are protected against DOX-induced apoptosis downstream, but not upstream of mitochondrial outer membrane permeabilisation (MOMP). This lack of MOMP induction is proposed to alter the metabolic phenotype, induce hypertrophic remodeling, and lead to functional cardiac impairment even in the absence of cardiomyocyte apoptosis. We discuss findings that DOX exposure can lead to increased sensitivity to further cardiomyocyte apoptosis, which may cause a gradual loss in cardiomyocytes over time and a compensatory hypertrophic remodeling after treatment, potentially explaining the long lag time in disease onset. We finally note similarities between DOX-exposed cardiomyocytes and apoptosis-primed cancer cells and propose computational system biology as a tool to predict patient individual DOX doses. In conclusion, combining recent findings in rodent hearts and cardiomyocytes exposed to DOX with insights from apoptosis signal transduction allowed us to obtain a molecularly deeper insight in this delayed and still enigmatic pathology of DCM.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Cardiomiopatia Dilatada/induzido quimicamente , Doxorrubicina/efeitos adversos , Animais , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Doença Crônica , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
19.
J Theor Biol ; 415: 125-136, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28017802

RESUMO

Activation of the NLRP3-inflammasome pathway and production of the inflammatory cytokine IL-1B after cellular damage caused by infarct or infection is a key process in several diseases such as acute myocardial infarction and inflammatory bowel disease. However, while the molecular triggers of the NLRP3-pathway after cellular damage are well known, the mechanisms that sustain or confine its activity are currently under investigation. We present here an Ordinary Differential Equation-based model that investigates the mechanisms of inflammasome activation and regulation in monocytes to predict IL-1ß activation kinetics upon a two-step activation by Damage-Associate-Molecular-Particles (DAMP) and extracellular ATP. Assuming both activation signals to be concomitantly present or present with a delay of 12h, the model predicted a transient IL-1ß activation at different concentration levels dependent on signal synchronisation. Introducing a positive feedback loop mediated by active IL-1ß resulted in a sustained IL-1ß activation, hence arguing for a paracrine signalling between inflammatory cells to guarantee a temporally stable inflammatory response. We then investigate mechanisms that control termination of inflammation using two recently identified molecular intervention points in the inflammasome pathway. We found that a more upstream regulation, by attenuating production of the IL-1ß-proform, was more potent in attenuating active IL-1ß production than direct inhibition of the NLRP3-inflammasome. Interestingly, ablating this upstream negative feedback led to a high variability of IL-1ß production in monocytes from different subjects, consistent with a recent pre-clinical study. We finally discuss the relevance and implications of our findings in disease models of acute myocardial infarction and spontaneous colitis.


Assuntos
Inflamassomos/metabolismo , Inflamação/patologia , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Comunicação Parácrina/fisiologia , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Células/patologia , Células Cultivadas , Retroalimentação , Humanos , Interleucina-1beta/biossíntese , Interleucina-1beta/metabolismo , Modelos Teóricos
20.
J Theor Biol ; 402: 129-43, 2016 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-27155046

RESUMO

Computer models allow the mechanistically detailed study of tumour proliferation and its dependency on nutrients. However, the computational study of large vascular tumours requires detailed information on the 3-dimensional vessel network and rather high computation times due to complex geometries. This study puts forward the idea of partitioning vascularised tissue into connected avascular elements that can exchange cells and nutrients between each other. Our method is able to rapidly calculate the evolution of proliferating as well as dead and quiescent cells, and hence a proliferative index, from a given amount and distribution of vascularisation of arbitrary complexity. Applying our model, we found that a heterogeneous vessel distribution provoked a higher proliferative index, suggesting increased malignancy, and increased the amount of dead cells compared to a more static tumour environment when a homogenous vessel distribution was assumed. We subsequently demonstrated that under certain amounts of vascularisation, cell proliferation may even increase when vessel density decreases, followed by a subsequent decrease of proliferation. This effect was due to a trade-off between an increase in compensatory proliferation for replacing dead cells and a decrease of cell population due to lack of oxygen supply in lowly vascularised tumours. Findings were illustrated by an ectopic colorectal cancer mouse xenograft model. Our presented approach can be in the future applied to study the effect of cytostatic, cytotoxic and anti-angiogenic chemotherapy and is ideally suited for translational systems biology, where rapid interaction between theory and experiment is essential.


Assuntos
Modelos Biológicos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/patologia , Animais , Contagem de Células , Morte Celular , Proliferação de Células , Células HCT116 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microvasos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...