Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci Monit ; 21: 2367-74, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26269120

RESUMO

BACKGROUND: Intraoperative bacterial contamination is a major risk factor for postoperative wound infections. This study investigated the influence of type of ventilation system on intraoperative airborne bacterial burden before and after installation of unidirectional displacement air flow systems. MATERIAL AND METHODS: We microbiologically monitored 1286 surgeries performed by a single surgical team that moved from operating rooms (ORs) equipped with turbulent mixing ventilation (TMV, according to standard DIN-1946-4 [1999], ORs 1, 2, and 3) to ORs with unidirectional displacement airflow (UDF, according to standard DIN-1946-4, annex D [2008], ORs 7 and 8). The airborne bacteria were collected intraoperatively with sedimentation plates. After incubation for 48 h, we analyzed the average number of bacteria per h, peak values, and correlation to surgery duration. In addition, we compared the last 138 surgeries in ORs 1-3 with the first 138 surgeries in ORs 7 and 8. RESULTS: Intraoperative airborne bacterial burden was 5.4 CFU/h, 5.5 CFU/h, and 6.1 CFU/h in ORs 1, 2, and 3, respectively. Peak values of burden were 10.7 CFU/h, 11.1 CFU/h, and 11.0 CFU/h in ORs 1, 2, and 3, respectively). With the UDF system, the intraoperative airborne bacterial burden was reduced to 0.21 CFU/h (OR 7) and 0.35 CFU/h (OR 8) on average (p<0.01). Accordingly, peak values decreased to 0.9 CFU/h and 1.0 CFU/h in ORs 7 and 8, respectively (p<0.01). Airborne bacterial burden increased linearly with surgery duration in ORs 1-3, but the UDF system in ORs 7 and 8 kept bacterial levels constantly low (<3 CFU/h). A comparison of the last 138 surgeries before with the first 138 surgeries after changing ORs revealed a 94% reduction in average airborne bacterial burden (5 CFU/h vs. 0.29 CFU/h, p<0.01). CONCLUSIONS: The unidirectional displacement airflow, which fulfills the requirements of standard DIN-1946-4 annex D of 2008, is an effective ventilation system that reduces airborne bacterial burden under real clinical conditions by more than 90%. Although decreased postoperative wound infection incidence was not specifically assessed, it is clear that airborne microbiological burden contributes to surgical infections.


Assuntos
Microbiologia do Ar , Salas Cirúrgicas , Ventilação/instrumentação , Microbiologia do Ar/normas , Bactérias/isolamento & purificação , Contagem de Colônia Microbiana , Alemanha , Humanos , Período Intraoperatório , Salas Cirúrgicas/normas , Infecção da Ferida Cirúrgica/prevenção & controle , Ventilação/normas
2.
Am J Infect Control ; 40(7): e228-32, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22542026

RESUMO

BACKGROUND: Wound infections present one of the most prevalent and frequent complications associated with surgical procedures. This study analyzes the impact of currently used ventilation systems in the operating room to reduce bacterial contamination during surgical procedures. METHODS: Four ventilation systems (window-based ventilation, supported air nozzle canopy, low-turbulence displacement airflow, and low-turbulence displacement airflow with flow stabilizer) were analyzed. Two hundred seventy-seven surgical procedures in 6 operating rooms of 5 different hospitals were analyzed for this study. RESULTS: Window-based ventilation showed the highest intraoperative contamination (13.3 colony-forming units [CFU]/h) followed by supported air nozzle canopy (6.4 CFU/h; P = .001 vs window-based ventilation) and low-turbulence displacement airflow (3.4 and 0.8 CFU/h; P < .001 vs window-based ventilation and supported air nozzle canopy). The highest protection was provided by the low-turbulence displacement airflow with flow stabilizer (0.7 CFU/h), which showed a highly significant difference compared with the best supported air nozzle canopy theatre (3.9 CFU/h; P < .001). Furthermore, this system showed no increase of contamination in prolonged durations of surgical procedures. CONCLUSION: This study shows that intraoperative contamination can be significantly reduced by the use of adequate ventilation systems.


Assuntos
Microbiologia do Ar , Bactérias/isolamento & purificação , Carga Bacteriana , Salas Cirúrgicas , Ventilação/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...