Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 47(6): 2064-73, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18260624

RESUMO

The dissolution of ThO2 powdered samples was examined in various conditions of pH and concentration of anions in the leachate. The first part of this paper describes the influence of pH on the dissolution of ThO2 in both nitric and hydrochloric media. The partial order relative to the proton concentration and the apparent normalized dissolution rate constants were determined. The second part of the paper describes the influence of other ligands such as perchlorate, chloride, sulfate, and hydrogen peroxide on the dissolution kinetics (at pH 1). An increase of RL was observed correlatively with the increase of complexing affinity of the ligand with Th. While nitric and hydrochloric media, which are weakly complexing, lead to RL values with the same order of magnitude as those for perchlorate media, the presence of sulfate or peroxide in the leachate significantly enhances the dissolution of ThO2. Consequently, the dissolution mechanism can be explained by the weakening of Th-O bonds through the formation of surface complexes at the solid/liquid interface, which enhance the detachment and thus accelerate the global dissolution. In addition, the dissolution of Th 0.87Pu 0.13O2 solid solution was also examined. The increase of the dissolution kinetics of Th 0.87Pu 0.13O 2, in comparison with that of ThO2, is considered to be caused by the presence of hydrogen peroxide formed by radiolysis of the leachate. Moreover, the redox properties of plutonium in acidic media, like disproportionation of Pu(IV) and Pu(V) and reduction of Pu(VI) and Pu(IV) in Pu(III) by H2O2, probably increase the dissolution of plutonium.

2.
Inorg Chem ; 44(16): 5833-43, 2005 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16060637

RESUMO

The carbonate complexation of curium(III) in aqueous solutions with high ionic strength was investigated below solubility limits in the 10-70 degrees C temperature range using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The equilibrium constant, K(3), for the Cm(CO(3))(2-) + CO(3)(2-) right harpoon over left harpoon Cm(CO(3))(3)(3-) reaction was determined (log K(3) = 2.01 +/- 0.05 at 25 degrees C, I = 3 M (NaClO(4))) and compared to scattered previously published values. The log K(3) value for Cm(III) was found to increase linearly with 1/T, reflecting a negligible temperature influence on the corresponding molar enthalpy change, Delta(r)H(3) = 12.2 +/- 4.4 kJ mol(-1), and molar entropy change, Delta(r)S(3) = 79 +/- 16 J mol(-1) K(-1). These values were extrapolated to I = 0 with the SIT formula (Delta(r)H(3) degrees = 9.4 +/- 4.8 kJ mol(-1), Delta(r)S(3) degrees = 48 +/- 23 J mol(-1) K(-1), log K(3) degrees = 0.88 +/- 0.05 at 25 degrees C). Virtually the same values were obtained from the solubility data for the analogous Am(III) complexes, which were reinterpreted considering the transformation of the solubility-controlling solid. The reaction studied was found to be driven by the entropy. This was interpreted as a result of hydration changes. As expected, excess energy changes of the reaction showed that the ionic strength had a greater influence on Delta(r)S(3) than it did on Delta(r)H(3).

3.
Appl Spectrosc ; 57(8): 1027-38, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14661847

RESUMO

Results of an inter-laboratory round-robin study of the application of time-resolved emission spectroscopy (TRES) to the speciation of uranium(VI) in aqueous media are presented. The round-robin study involved 13 independent laboratories, using various instrumentation and data analysis methods. Samples were prepared based on appropriate speciation diagrams and, in general, were found to be chemically stable for at least six months. Four different types of aqueous uranyl solutions were studied: (1) acidic medium where UO2(2+)aq is the single emitting species, (2) uranyl in the presence of fluoride ions, (3) uranyl in the presence of sulfate ions, and (4) uranyl in aqueous solutions at different pH, promoting the formation of hydrolyzed species. Results between the laboratories are compared in terms of the number of decay components, luminescence lifetimes, and spectral band positions. The successes and limitations of TRES in uranyl analysis and speciation in aqueous solutions are discussed.


Assuntos
Técnicas de Química Analítica/normas , Laboratórios/normas , Análise Espectral/normas , Urânio , Cooperação Internacional , Controle de Qualidade , Reprodutibilidade dos Testes , Fatores de Tempo , Urânio/análise , Urânio/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...