Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Autism ; 14(1): 37, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805500

RESUMO

BACKGROUND: Many studies have reported that autism spectrum disorder (ASD) is associated with atypical structural and functional connectivity. However, we know relatively little about the development of these differences in infancy. METHODS: We used a high-density electroencephalogram (EEG) dataset pooled from two independent infant sibling cohorts, to characterize such neurodevelopmental deviations during the first years of life. EEG was recorded at 6 and 12 months of age in infants at typical (N = 92) or elevated likelihood for ASD (N = 90), determined by the presence of an older sibling with ASD. We computed the functional connectivity between cortical sources of EEG during video watching using the corrected imaginary part of phase-locking values. RESULTS: Our main analysis found no significant association between functional connectivity and ASD, showing only significant effects for age, sex, age-sex interaction, and site. Given these null results, we performed an exploratory analysis and observed, at 12 months, a negative correlation between functional connectivity and ADOS calibrated severity scores for restrictive and repetitive behaviors (RRB). LIMITATIONS: The small sample of ASD participants inherent to sibling studies limits diagnostic group comparisons. Also, results from our secondary exploratory analysis should be considered only as potential relationships to further explore, given their increased vulnerability to false positives. CONCLUSIONS: These results are inconclusive concerning an association between EEG functional connectivity and ASD in infancy. Exploratory analyses provided preliminary support for a relationship between RRB and functional connectivity specifically, but these preliminary observations need corroboration on larger samples.


Assuntos
Transtorno do Espectro Autista , Humanos , Lactente , Transtorno do Espectro Autista/diagnóstico , Eletroencefalografia/métodos , Irmãos , Encéfalo
2.
Res Sq ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37292600

RESUMO

Background: Many studies have reported that autism spectrum disorder (ASD) is associated with atypical structural and functional connectivity. However, relatively little is known about the development of these differences in infancy and on how trajectories may vary between sexes. Methods: We used the International Infant EEG Platform (EEG-IP), a high-density electroencephalogram (EEG) dataset pooled from two independent infant sibling cohorts, to characterize such neurodevelopmental deviations during the first years of life. EEG was recorded at 6, 12, and 18 months of age at typical (N=97) or high familial risk for ASD (N=98), determined by the presence of an older sibling with a confirmed ASD diagnosis. We computed the functional connectivity between cortical EEG sources during video watching using the corrected imaginary part of phase-locking values. Results: Our findings showed low regional specificity for group differences in functional connectivity but revealed different sex-specific trajectories between females and males in the group of high-risk infants. Specifically, functional connectivity was negatively correlated with ADOS calibrated severity scores, particularly at 12 months for the social affect score for females and for the restrictive and repetitive behaviors for males. Limitations: This study has been limited mostly due to issues related to the relatively small effective sample size inherent in sibling studies, particularly for diagnostic group comparisons. Conclusions: These results are consistent with sex differences in ASD observed in previous research and provide further insights into the role of functional connectivity in these differences.

3.
Infancy ; 28(4): 754-770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943905

RESUMO

Understanding the neural processes underpinning individual differences in early language development is of increasing interest, as it is known to vary in typical development and to be quite heterogeneous in neurodevelopmental conditions. However, few studies to date have tested whether early brain measures are indicative of the developmental trajectory of language, as opposed to language outcomes at specific ages. We combined recordings from two longitudinal studies, including typically developing infants without a family history of autism, and infants with increased likelihood of developing autism (infant-siblings) (N = 191). Electroencephalograms (EEG) were recorded at 6 months, and behavioral assessments at 6, 12, 18, 24 and 36 months of age. Using a growth curve model, we tested whether absolute EEG spectral power at 6 months was associated with concurrent language abilities, and developmental change in language between 6 and 36 months. We found evidence of an association between 6-month alpha-band power and concurrent, but not developmental change in, expressive language ability in both infant-siblings and control infants. The observed association between 6-month alpha-band power and 6-month expressive language was not moderated by group status, suggesting some continuity in neural mechanisms.


Assuntos
Desenvolvimento da Linguagem , Idioma , Humanos , Lactente , Encéfalo , Estudos Longitudinais , Eletroencefalografia
4.
Autism Res ; 14(7): 1390-1403, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955195

RESUMO

Autism spectrum disorder (ASD) has its origins in the atypical development of brain networks. Infants who are at high familial risk for, and later diagnosed with ASD, show atypical activity in multiple electroencephalography (EEG) oscillatory measures. However, infant-sibling studies are often constrained by small sample sizes. We used the International Infant EEG Data Integration Platform, a multi-site dataset with 432 participants, including 222 at high-risk for ASD, from whom repeated measurements of EEG were collected between the ages of 3-36 months. We applied a latent growth curve model to test whether familial risk status predicts developmental trajectories of spectral power across the first 3 years of life, and whether these trajectories predict ASD outcome. Change in spectral EEG power in all frequency bands occurred during the first 3 years of life. Familial risk, but not a later diagnosis of ASD, was associated with reduced power at 3 months, and a steeper developmental change between 3 and 36 months in nearly all absolute power bands. ASD outcome was not associated with absolute power intercept or slope. No associations were found between risk or outcome and relative power. This study applied an analytic approach not used in previous prospective biomarker studies of ASD, which was modeled to reflect the temporal relationship between genetic susceptibility, brain development, and ASD diagnosis. Trajectories of spectral power appear to be predicted by familial risk; however, spectral power does not predict diagnostic outcome above and beyond familial risk status. Discrepancies between current results and previous studies are discussed. LAY SUMMARY: Infants with an older sibling who is diagnosed with ASD are at increased risk of developing ASD themselves. This article tested whether EEG spectral power in the first year of life can predict whether these infants did or did not develop ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/diagnóstico , Encéfalo , Pré-Escolar , Eletroencefalografia , Humanos , Lactente , Irmãos
5.
Dev Cogn Neurosci ; 48: 100938, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33714056

RESUMO

Although studies of PAF in individuals with autism spectrum disorder (ASD) report group differences and associations with non-verbal cognitive ability, it is not known how PAF relates to familial risk for ASD, and whether similar associations with cognition in are present in infancy. Using a large multi-site prospective longitudinal dataset of infants with low and high familial risk for ASD, metrics of PAF at 12 months were extracted and growth curves estimated for cognitive development between 12-36 months. Analyses tested whether PAF 1) differs between low and high risk infants, 2) is associated with concurrent non-verbal/verbal cognitive ability and 3) predicts developmental change in non-verbal/verbal ability. Moderation of associations between PAF and cognitive ability by familial risk status was also tested. No differences in 12-month PAF were found between low and high risk infants. PAF was associated with concurrent non-verbal cognitive ability, but did not predict change in non-verbal cognitive over development. No associations were found between PAF and verbal ability, along with no evidence of moderation. PAF is not related to familial risk for ASD, and is a neural marker of concurrent non-verbal cognitive ability, but not verbal ability, in young infants at low and high risk for ASD.


Assuntos
Transtorno do Espectro Autista , Cognição , Transtorno do Espectro Autista/diagnóstico , Biomarcadores , Humanos , Lactente , Estudos Prospectivos , Irmãos
6.
J Neurosci Methods ; 347: 108961, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038417

RESUMO

BACKGROUND: The methods available for pre-processing EEG data are rapidly evolving as researchers gain access to vast computational resources; however, the field currently lacks a set of standardized approaches for data characterization, efficient interactive quality control review procedures, and large-scale automated processing that is compatible with High Performance Computing (HPC) resources. NEW METHOD: In this paper we describe an infrastructure for the development of standardized procedures for semi and fully automated pre-processing of EEG data. Our pipeline incorporates several methods to isolate cortical signal from noise, maintain maximal information from raw recordings and provide comprehensive quality control and data visualization. In addition, batch processing procedures are integrated to scale up analyses for processing hundreds or thousands of data sets using HPC clusters. RESULTS: We demonstrate here that by using the EEG Integrated Platform Lossless (EEG-IP-L) pipeline's signal quality annotations, significant increase in data retention is achieved when applying subsequent post-processing ERP segment rejection procedures. Further, we demonstrate that the increase in data retention does not attenuate the ERP signal. CONCLUSIONS: The EEG-IP-L state provides the infrastructure for an integrated platform that includes long-term data storage, minimal data manipulation and maximal signal retention, and flexibility in post processing strategies.


Assuntos
Curadoria de Dados , Processamento de Sinais Assistido por Computador , Artefatos , Eletroencefalografia , Armazenamento e Recuperação da Informação , Ruído
7.
Mol Med ; 26(1): 40, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380941

RESUMO

BACKGROUND: Establishing reliable predictive and diganostic biomarkers of autism would enhance early identification and facilitate targeted intervention during periods of greatest plasticity in early brain development. High impact research on biomarkers is currently limited by relatively small sample sizes and the complexity of the autism phenotype. METHODS: EEG-IP is an International Infant EEG Data Integration Platform developed to advance biomarker discovery by enhancing the large scale integration of multi-site data. Currently, this is the largest multi-site standardized dataset of infant EEG data. RESULTS: First, multi-site data from longitudinal cohort studies of infants at risk for autism was pooled in a common repository with 1382 EEG longitudinal recordings, linked behavioral data, from 432 infants between 3- to 36-months of age. Second, to address challenges of limited comparability across independent recordings, EEG-IP applied the Brain Imaging Data Structure (BIDS)-EEG standard, resulting in a harmonized, extendable, and integrated data state. Finally, the pooled and harmonized raw data was preprocessed using a common signal processing pipeline that maximizes signal isolation and minimizes data reduction. With EEG-IP, we produced a fully standardized data set, of the pooled, harmonized, and pre-processed EEG data from multiple sites. CONCLUSIONS: Implementing these integrated solutions for the first time with infant data has demonstrated success and challenges in generating a standardized multi-site data state. The challenges relate to annotation of signal sources, time, and ICA analysis during pre-processing. A number of future opportunities also emerge, including validation of analytic pipelines that can replicate existing findings and/or test novel hypotheses.


Assuntos
Transtorno Autístico/diagnóstico , Encéfalo/fisiopatologia , Eletroencefalografia , Transtorno Autístico/etiologia , Biomarcadores , Análise de Dados , Eletroencefalografia/métodos , Humanos , Prognóstico
9.
Mol Autism ; 10: 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312421

RESUMO

Background: Duplications of 15q11.2-q13.1 (Dup15q syndrome), including the paternally imprinted gene UBE3A and three nonimprinted gamma-aminobutyric acid type-A (GABAA) receptor genes, are highly penetrant for neurodevelopmental disorders such as autism spectrum disorder (ASD). To guide targeted treatments of Dup15q syndrome and other forms of ASD, biomarkers are needed that reflect molecular mechanisms of pathology. We recently described a beta EEG phenotype of Dup15q syndrome, but it remains unknown which specific genes drive this phenotype. Methods: To test the hypothesis that UBE3A overexpression is not necessary for the beta EEG phenotype, we compared EEG from a reference cohort of children with Dup15q syndrome (n = 27) to (1) the pharmacological effects of the GABAA modulator midazolam (n = 12) on EEG from healthy adults, (2) EEG from typically developing (TD) children (n = 14), and (3) EEG from two children with duplications of paternal 15q (i.e., the UBE3A-silenced allele). Results: Peak beta power was significantly increased in the reference cohort relative to TD controls. Midazolam administration recapitulated the beta EEG phenotype in healthy adults with a similar peak frequency in central channels (f = 23.0 Hz) as Dup15q syndrome (f = 23.1 Hz). Both paternal Dup15q syndrome cases displayed beta power comparable to the reference cohort. Conclusions: Our results suggest a critical role for GABAergic transmission in the Dup15q syndrome beta EEG phenotype, which cannot be explained by UBE3A dysfunction alone. If this mechanism is confirmed, the phenotype may be used as a marker of GABAergic pathology in clinical trials for Dup15q syndrome.


Assuntos
Biomarcadores/metabolismo , Eletroencefalografia , Deficiência Intelectual/diagnóstico por imagem , Adulto , Criança , Aberrações Cromossômicas , Cromossomos Humanos Par 15 , Estudos de Coortes , Pai , Feminino , Humanos , Deficiência Intelectual/tratamento farmacológico , Masculino , Midazolam/administração & dosagem , Midazolam/uso terapêutico , Fenótipo , Receptores de GABA-A/metabolismo
10.
PLoS One ; 11(12): e0167179, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27977700

RESUMO

BACKGROUND: Duplications of 15q11.2-q13.1 (Dup15q syndrome) are highly penetrant for autism spectrum disorder (ASD). A distinct electrophysiological (EEG) pattern characterized by excessive activity in the beta band has been noted in clinical reports. We asked whether EEG power in the beta band, as well as in other frequency bands, distinguished children with Dup15q syndrome from those with non-syndromic ASD and then examined the clinical correlates of this electrophysiological biomarker in Dup15q syndrome. METHODS: In the first study, we recorded spontaneous EEG from children with Dup15q syndrome (n = 11), age-and-IQ-matched children with ASD (n = 10) and age-matched typically developing (TD) children (n = 9) and computed relative power in 6 frequency bands for 9 regions of interest (ROIs). Group comparisons were made using a repeated measures analysis of variance. In the second study, we recorded spontaneous EEG from a larger cohort of individuals with Dup15q syndrome (n = 27) across two sites and examined age, epilepsy, and duplication type as predictors of beta power using simple linear regressions. RESULTS: In the first study, spontaneous beta1 (12-20 Hz) and beta2 (20-30 Hz) power were significantly higher in Dup15q syndrome compared with both comparison groups, while delta (1-4 Hz) was significantly lower than both comparison groups. Effect sizes in all three frequency bands were large (|d| > 1). In the second study, we found that beta2 power was significantly related to epilepsy diagnosis in Dup15q syndrome. CONCLUSIONS: Here, we have identified an electrophysiological biomarker of Dup15q syndrome that may facilitate clinical stratification, treatment monitoring, and measurement of target engagement for future clinical trials. Future work will investigate the genetic and neural underpinnings of this electrophysiological signature as well as the functional consequences of excessive beta oscillations in Dup15q syndrome.


Assuntos
Córtex Cerebral/fisiopatologia , Eletrodiagnóstico/métodos , Eletroencefalografia/métodos , Deficiência Intelectual/diagnóstico , Adolescente , Transtorno do Espectro Autista/fisiopatologia , Biomarcadores , Criança , Pré-Escolar , Aberrações Cromossômicas , Cromossomos Humanos Par 15 , Feminino , Humanos , Lactente , Deficiência Intelectual/fisiopatologia , Masculino , Adulto Jovem
11.
J Neurodev Disord ; 8: 19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27158270

RESUMO

BACKGROUND: One of the most common genetic variants associated with autism spectrum disorder (ASD) are duplications of chromosome 15q11.2-q13.1 (Dup15q syndrome). To identify distinctive developmental and behavioral features in Dup15q syndrome, we examined the social communication, adaptive, and cognitive skills in clinic-referred subjects and compared the characteristics of children with Dup15q syndrome to age/IQ-matched children with non-syndromic ASD. Behavior and development were also analyzed within the Dup15q group for differences related to copy number or epilepsy. METHODS: Participants included 13 children with Dup15q syndrome and 13 children with non-syndromic ASD, matched on chronological and mental age, ages 22 months-12 years. In the Dup15q group, ten participants had isodicentric and three had interstitial duplications. Four children had active epilepsy (all isodicentric). Participants were assessed for verbal and non-verbal cognition, ASD characteristics based on the Autism Diagnostic Observation Schedule (ADOS), and adaptive function based on the Vineland Adaptive Behavior Scales (VABS). Group comparisons were performed between Dup15q and ASD participants, as well as within the Dup15q group based on duplication type and epilepsy status. RESULTS: All children with Dup15q syndrome met the criteria for ASD; ASD severity scores were significantly lower than children in the non-syndromic ASD group. ADOS profiles demonstrated a relative strength in items related to social interest. Children with Dup15q syndrome also demonstrated significantly more impairment in motor and daily living skills. Within the Dup15q group, children with epilepsy demonstrated significantly lower cognitive and adaptive function than those without epilepsy. CONCLUSIONS: The relative strength observed in social interest and responsiveness in the context of impaired motor skills represents an important avenue for intervention, including aggressive treatment of epilepsy, early and consistent focus on motor skills, and intervention targeting joint attention and language within a play context, in order to build on social interest to further develop social communication abilities. Longitudinal research beginning in early development will elucidate the temporal relationships between developmental domains and neurological comorbidities in these children at high risk for neurodevelopmental disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...