Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Leukoc Biol ; 94(1): 77-88, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23625201

RESUMO

PGI2 signaling through IP inhibits allergen-induced inflammatory responses in mice. We reported previously that PGI2 analogs decreased proinflammatory cytokine and chemokine production by mature BMDCs. However, whether PGI2 modulates the function of immature DCs has not been investigated. We hypothesized that PGI2 negatively regulates immature DC function and investigated the effect of PGI2 analogs on immature BMDC antigen uptake and migration in vitro and in vivo. Immature BMDCs were obtained from WT and IPKO mice, both on a C57BL/6 background. The PGI2 analog cicaprost decreased FITC-OVA uptake by immature BMDCs. In addition, cicaprost increased immature BMDC podosome dissolution, pro-MMP-9 production, cell surface CCR7 expression, and chemotactic migration toward CCL19 and CCL21, as well as chemokinesis, in an IP-specific fashion. These in vitro results suggested that cicaprost promotes migration of immature DCs from mucosal surface to draining LNs. This concept was supported by the finding that migration of immature GFP⁺ BMDCs to draining LNs was enhanced by pretreatment with cicaprost. Further, migration of immature lung DCs labeled with PKH26 was enhanced by intranasal cicaprost administration. Our results suggest PGI2-IP signaling increases immature DC migration to the draining LNs and may represent a novel mechanism by which this eicosanoid inhibits immune responses.


Assuntos
Movimento Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Epoprostenol/farmacologia , Ovalbumina/imunologia , Inibidores da Agregação Plaquetária/farmacologia , Receptores de Epoprostenol/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Células da Medula Óssea/metabolismo , Movimento Celular/imunologia , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Quimiotaxia , Citocinas/metabolismo , Células Dendríticas/imunologia , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/metabolismo , Receptores CCR7/metabolismo
3.
Am J Respir Cell Mol Biol ; 49(3): 396-402, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23590311

RESUMO

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a multienzyme complex, is the major source for production of reactive oxygen species (ROS). ROS are increased in allergic diseases, such as asthma, but the role of ROS in disease pathogenesis remains uncertain. We hypothesized that mice unable to generate ROS via the NADPH oxidase pathway would have decreased allergic airway inflammation. To test this hypothesis, we studied gp91phox(-/-) mice in a model of allergic airway inflammation after sensitization and challenge with ovalbumin. Serum, bronchoalveolar lavage fluid, and lungs were then examined for evidence of allergic inflammation. We found that mice lacking a functional NADPH oxidase complex had significantly decreased ROS production and allergic airway inflammation, compared with wild-type (WT) control animals. To determine the mechanism by which allergic inflammation was inhibited by gp91phox deficiency, we cultured bone marrow-derived dendritic cells from WT and gp91phox(-/-) mice and activated them with LPS. IL-12 expression was significantly increased in the gp91phox(-/-) bone marrow-derived dendritic cells, suggesting that the cytokine profile produced in the absence of gp91phox enhanced the conditions leading to T helper (Th) type 1 differentiation, while inhibiting Th2 polarization. Splenocytes from sensitized gp91phox(-/-) animals produced significantly less IL-13 in response to ovalbumin challenge in vitro compared with splenocytes from sensitized WT mice, suggesting that NADPH oxidase promotes allergic sensitization. In contrast, inflammatory cytokines produced by T cells cultured from WT and gp91phox(-/-) mice under Th0, Th1, Th2, and Th17 conditions were not significantly different. This study demonstrates the importance of NADPH oxidase activity and ROS production in a murine model of asthma.


Assuntos
Asma/imunologia , Interleucina-12/imunologia , Interleucina-13/imunologia , Pulmão/imunologia , Glicoproteínas de Membrana/imunologia , NADPH Oxidases/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Asma/induzido quimicamente , Asma/genética , Asma/patologia , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Deleção de Genes , Interleucina-12/biossíntese , Interleucina-13/biossíntese , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Ovalbumina/imunologia , Ovalbumina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células Th1/imunologia , Células Th1/patologia , Equilíbrio Th1-Th2 , Células Th17/imunologia , Células Th17/patologia , Células Th2/imunologia , Células Th2/patologia
4.
PLoS One ; 7(5): e33518, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590492

RESUMO

BACKGROUND: Prostaglandin I(2) (PGI(2)), a lipid mediator currently used in treatment of human disease, is a critical regulator of adaptive immune responses. Although PGI(2) signaling suppressed Th1 and Th2 immune responses, the role of PGI(2) in Th17 differentiation is not known. METHODOLOGY/PRINCIPAL FINDINGS: In mouse CD4(+)CD62L(+) naïve T cell culture, the PGI(2) analogs iloprost and cicaprost increased IL-17A and IL-22 protein production and Th17 differentiation in vitro. This effect was augmented by IL-23 and was dependent on PGI(2) receptor IP signaling. In mouse bone marrow-derived CD11c(+) dendritic cells (BMDCs), PGI(2) analogs increased the ratio of IL-23/IL-12, which is correlated with increased ability of BMDCs to stimulate naïve T cells for IL-17A production. Moreover, IP knockout mice had delayed onset of a Th17-associated neurological disease, experimental autoimmune encephalomyelitis (EAE), and reduced infiltration of IL-17A-expressing mononuclear cells in the spinal cords compared to wild type mice. These results suggest that PGI(2) promotes in vivo Th17 responses. CONCLUSION: The preferential stimulation of Th17 differentiation by IP signaling may have important clinical implications as PGI(2) and its analogs are commonly used to treat human pulmonary hypertension.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Epoprostenol/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Receptores de Epoprostenol/imunologia , Células Th17/imunologia , Animais , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Diferenciação Celular/imunologia , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Epoprostenol/análogos & derivados , Epoprostenol/genética , Epoprostenol/imunologia , Feminino , Humanos , Iloprosta/imunologia , Iloprosta/farmacologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-23/genética , Interleucina-23/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Inibidores da Agregação Plaquetária/imunologia , Receptores de Epoprostenol/genética , Medula Espinal/imunologia , Medula Espinal/patologia , Células Th17/patologia
5.
J Immunol ; 188(3): 1027-35, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22210911

RESUMO

IL-13 is a central mediator of airway hyperresponsiveness and mucus expression, both hallmarks of asthma. IL-13 is found in the sputum of patients with asthma; therefore, IL-13 is an attractive drug target for treating asthma. We have shown previously that IL-13 inhibits Th17 cell production of IL-17A and IL-21 in vitro. Th17 cells are associated with autoimmune diseases, host immune responses, and severe asthma. In this study, we extend our in vitro findings and determine that IL-13 increases IL-10 production from Th17-polarized cells and that IL-13-induced IL-10 production negatively regulates the secretion of IL-17A and IL-21. To determine if IL-13 negatively regulates lung IL-17A expression via an IL-10-dependent mechanism in vivo, we used a model of respiratory syncytial virus (RSV) strain A2 infection in STAT1 knockout (KO) mice that increases lung IL-17A and IL-13 expression, cytokines not produced during RSV infection in wild-type mice. To test the hypothesis that IL-13 negatively regulates lung IL-17A expression, we created STAT1/IL-13 double KO (DKO) mice. We found that RSV-infected STAT1/IL-13 DKO mice had significantly greater lung IL-17A expression compared with that of STAT1 KO mice and that increased IL-17A expression was abrogated by anti-IL-10 Ab treatment. RSV-infected STAT1/IL-13 DKO mice also had increased neutrophil infiltration compared with that of RSV-infected STAT1 KO mice. Neutralizing IL-10 increased the infiltration of inflammatory cells into the lungs of STAT1 KO mice but not STAT1/IL-13 DKO mice. These findings are vital to understanding the potential side effects of therapeutics targeting IL-13. Inhibiting IL-13 may decrease IL-10 production and increase IL-17A production, thus potentiating IL-17A-associated diseases.


Assuntos
Interleucina-10/fisiologia , Interleucina-13/fisiologia , Interleucina-17/metabolismo , Pneumonia/virologia , Células Th17/metabolismo , Animais , Movimento Celular , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Pneumonia/imunologia , Pneumonia/patologia , Infecções por Vírus Respiratório Sincicial/imunologia
6.
J Virol ; 85(12): 5782-93, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21471228

RESUMO

Airway mucus is a hallmark of respiratory syncytial virus (RSV) lower respiratory tract illness. Laboratory RSV strains differentially induce airway mucus production in mice. Here, we tested the hypothesis that RSV strains differ in pathogenesis by screening six low-passage RSV clinical isolates for mucogenicity and virulence in BALB/cJ mice. The RSV clinical isolates induced variable disease severity, lung interleukin-13 (IL-13) levels, and gob-5 levels in BALB/cJ mice. We chose two of these clinical isolates for further study. Infection of BALB/cJ mice with RSV A2001/2-20 (2-20) resulted in greater disease severity, higher lung IL-13 levels, and higher lung gob-5 levels than infection with RSV strains A2, line 19, Long, and A2001/3-12 (3-12). Like the line 19 RSV strain, the 2-20 clinical isolate induced airway mucin expression in BALB/cJ mice. The 2-20 and 3-12 RSV clinical isolates had higher lung viral loads than laboratory RSV strains at 1 day postinfection (p.i.). This increased viral load correlated with higher viral antigen levels in the bronchiolar epithelium and greater histopathologic changes at 1 day p.i. The A2 RSV strain had the highest peak viral load at day 4 p.i. RSV 2-20 infection caused epithelial desquamation, bronchiolitis, airway hyperresponsiveness, and increased breathing effort in BALB/cJ mice. We found that RSV clinical isolates induce variable pathogenesis in mice, and we established a mouse model of clinical isolate strain-dependent RSV pathogenesis that recapitulates key features of RSV disease.


Assuntos
Modelos Animais de Doenças , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Vírus Sincicial Respiratório Humano/patogenicidade , Animais , Linhagem Celular , Canais de Cloreto/metabolismo , Feminino , Humanos , Interleucina-13/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Dados de Sequência Molecular , Mucinas/metabolismo , Mucoproteínas/metabolismo , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/isolamento & purificação , Análise de Sequência de DNA , Índice de Gravidade de Doença , Especificidade da Espécie , Proteínas Virais de Fusão , Carga Viral , Virulência
7.
J Allergy Clin Immunol ; 127(4): 1006-13.e1-4, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21236478

RESUMO

BACKGROUND: IL-13 is a central mediator of airway responsiveness and mucus expression in patients with allergic airway inflammation, and IL-13 is currently a therapeutic target for asthma. However, little is known about how IL-13 regulates human CD4(+) T-cell lineages because IL-13 receptor (IL-13R) α1, a subunit of IL-13R, has not previously been reported to exist on human T cells. OBJECTIVE: We sought to determine whether human CD4(+) T(H)17 cells express IL-13Rα1 and whether IL-13 regulates T(H)17 cytokine production. METHODS: Naive human CD4(+) cells were isolated from whole blood, activated with anti-CD3 and anti-CD28, and polarized to T(H)1, T(H)2, T(H)17, or induced regulatory T cells in the presence of IL-13 (0-10 ng/mL). Cell supernatants, total RNA, or total protein was examined 4 days after T(H)17 polarization. RESULTS: T(H)17 cells, but not T(H)0, T(H)1, T(H)2, or induced regulatory T cells, expressed IL-13Rα1. IL-13 attenuated IL-17A production, as well as expression of retinoic acid-related orphan receptor, runt-related transcription factor-1, and interferon regulatory factor 4 in T(H)17-polarized cells. IL-13 neither inhibited IFN-γ production from T(H)1 cells nor inhibited IL-4 production from T(H)2 cells. Furthermore, attenuation of IL-17A production only occurred when IL-13 was present within 24 hours of T-cell activation or at the time of restimulation. CONCLUSIONS: IL-13Rα1 is expressed on human CD4(+) T(H)17 cells, and IL-13 attenuates IL-17A production at polarization and restimulation. Although IL-13 is an attractive therapeutic target for decreasing symptoms associated with asthma, these results suggest that therapies inhibiting IL-13 production could have adverse side effects by increasing IL-17A production.


Assuntos
Subunidade alfa1 de Receptor de Interleucina-13/biossíntese , Interleucina-13/metabolismo , Interleucina-17/biossíntese , Células Th17/imunologia , Células Th17/metabolismo , Separação Celular , Citometria de Fluxo , Humanos , Immunoblotting , Interleucina-13/imunologia , Subunidade alfa1 de Receptor de Interleucina-13/imunologia , Interleucina-17/imunologia , Ativação Linfocitária/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
8.
J Virol ; 83(9): 4185-94, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19211758

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of respiratory failure and viral death in infants. Abundant airway mucus contributes to airway obstruction in RSV disease. Interleukin-13 (IL-13) is a mediator of pulmonary mucus secretion. It has been shown that infection of BALB/c mice with the RSV line 19 strain but not with the RSV A2 laboratory strain results in lung IL-13 and mucus expression. Here, we sequenced the RSV line 19 genome and compared it to the commonly used A2 and Long strains. There were six amino acid differences between the line 19 strain and both the A2 and Long RSV strains, five of which are in the fusion (F) protein. The Long strain, like the A2 strain, did not induce lung IL-13 and mucus expression in BALB/c mice. We hypothesized that the F protein of RSV line 19 is more mucogenic than the F proteins of A2 and Long. We generated recombinant, F-chimeric RSVs by replacing the F gene of A2 with the F gene of either line 19 or Long. Infection of BALB/c mice with RSV rA2 line 19F resulted in lower alpha interferon lung levels 24 h postinfection, higher lung viral load, higher lung IL-13 levels, greater airway mucin expression levels, and greater airway hyperresponsiveness than infection with rA2-A2F or rA2-LongF. We identified the F protein of RSV line 19 as a factor that plays a role in pulmonary mucin expression in the setting of RSV infection.


Assuntos
Muco/virologia , RNA/genética , Proteínas Recombinantes de Fusão/metabolismo , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/metabolismo , Carga Viral , Animais , Sequência de Bases , Linhagem Celular Tumoral , Genoma Viral/genética , Humanos , Interleucina-13/biossíntese , Interleucina-13/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Muco/imunologia , Mutação/genética , Proteínas Recombinantes de Fusão/genética , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sinciciais Respiratórios/classificação , Vírus Sinciciais Respiratórios/genética
9.
Clin Mol Allergy ; 7: 2, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19154602

RESUMO

Viruses are the predominant infectious cause of asthma exacerbations in the developed world. In addition, recent evidence strongly suggests that viral infections may also have a causal role in the development of childhood asthma. In this article, we will briefly describe the general perception of how the link between infections and asthma has changed over the last century, and then focus on very recent developments that have provided new insights into the contribution of viruses to asthma pathogenesis. Highlighted areas include the contribution of severe early life viral infections to asthma inception, genetic determinants of severe viral infections in infancy, the differences in innate and adaptive immune system cytokine responses to viral infection between asthmatic and nonasthmatic subjects, and a potential vaccine strategy to prevent severe early life virally-induced illness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...