Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 113(1-3): 19-32, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37523054

RESUMO

Helicases are the motor proteins not only involved in the process of mRNA metabolism but also played a significant role in providing abiotic stresses tolerance. In this study, a DEAD-box RNA helicase OsDB10 was cloned and functionally characterized. The transcript levels of OsDB10 were increased both in shoot and root upon salt, heat, cold, and ABA application and was more prominent in shoot compared to root. Genomic integration of OsDB10 in transgenic rice was confirmed by PCR, Southern blot and qRT-PCR analysis. The transgenic plants showed quicker seed germination, reduced necrosis, higher chlorophyll, more survival rate, better seedling growth, and produced more grain yield under salinity stress. Furthermore, transgenic lines also accumulated less Na+ and high K+ ions and salinity tolerance of the transgenic were also assayed by measuring different bio-physiological indices. Moreover, the OsDB10 transgenic plants showed enhanced tolerance to salinity-induced oxidative stress by scavenging ROS and increased activity of antioxidants enzymes. Microarray analysis showed upregulation of transcriptional regulations and metabolic reprogramming as OsDB10 overexpression modulates the expression of many other genes. Altogether, our results confirmed that OsDB10 is a functional DEAD-box RNA helicase and played vital roles in plant defence response against salinity stress.

2.
Transgenic Res ; 32(4): 293-304, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247124

RESUMO

Helicases are the motor proteins not only involved in transcriptional and post-transcription process but also provide abiotic stress tolerance in many crops. The p68, belong to the SF2 (DEAD-box helicase) family proteins and overexpression of Psp68 providing enhanced tolerance to transgenic rice plants. In this study, salinity tolerant marker-free transgenic rice has been developed by overexpressing Psp68 gene and phenotypically characterized. The Psp68 overexpressing marker-free transgenic rice plants were initially screened in the rooting medium containing salt stress and 20% polyethylene glycol (PEG). Stable integration and overexpression of Psp68 in marker-free transgenic lines were confirmed by molecular analyses including PCR, southern, western blot, and qRT-PCR analyses. The marker-free transgenic lines showed enhanced tolerance to salinity stress as displayed by early seed germination, higher chlorophyll content, reduced necrosis, more survival rate, improved seedling growth and more grain yield per plant. Furthermore, Psp68 overexpressing marker-free transgenics also accumulated less Na+ and higher K+ ions in the presence of salinity stress. Phenotypic analyses also revealed that marker-free transgenic rice lines efficiently scavenge ROS-mediated damages as displayed by lower H2O2 and malondialdehyde content, delayed electrolyte leakage, higher photosynthetic efficiency, membrane stability, proline content and enhanced activities of antioxidants enzymes. Overall, our results confirmed that Psp68 overexpression confers salinity stress tolerance in marker-free transgenics, hence the technique could be utilized to develop genetically modified crops without any biosafety issues.


Assuntos
Oryza , Oryza/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Produtos Agrícolas/genética , Peróxido de Hidrogênio , Estresse Fisiológico/genética , DNA Helicases/genética , Tolerância ao Sal/genética , RNA Helicases DEAD-box/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Salinidade
3.
Planta ; 240(4): 809-24, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25074587

RESUMO

MAIN CONCLUSION: The present study demonstrates the first direct evidence of the novel role of OsACA6 in providing Cd (2+) stress tolerance in transgenic tobacco by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Cadmium, a non-essential toxic heavy metal, interferes with the plant growth and development. It reaches the leaves through xylem and may become part of the food chain, thus causing detrimental effects to human health. Therefore, there is an urgent need to develop strategies for engineering plants for Cd(2+) tolerance and less accumulation. The members of P-type ATPases family transport metal ions including Cd(2+), and thus play important role an ion homeostasis. The present study elucidates the role of P-type 2B Ca(2+) ATPase (OsACA6) in Cd(2+) stress tolerance. The transcript levels of OsACA6 were up-regulated upon Cd(2+), Zn(2+) and Mn(2+) exposure. Transgenic tobacco expressing OsACA6 showed tolerance towards Cd(2+) stress as demonstrated by several physiological indices including root length, biomass, chlorophyll, malondialdehyde and hydrogen peroxide content. The roots of the transgenic lines accumulated more Cd(2+) as compared to shoot. Further, confocal laser scanning microscopy showed that Cd(2+) exposure altered Ca(2+) uptake in OsACA6 transgenic plants. OsACA6 expression in tobacco also protected the transgenic plants from oxidative stress by enhancing the activity of enzymatic (SOD, CAT, APX, GR) and non-enzymatic (GSH and AsA) antioxidant machinery. Transgenic lines also tolerated Zn(2+) and Mn(2+) stress; however, tolerance for these ions was not as significant as observed for Cd(2+) exposure. Thus, overexpression of OsACA6 confers Cd(2+) stress tolerance in transgenic lines by maintaining cellular ion homeostasis and modulating reactive oxygen species (ROS)-scavenging pathway. The results of the present study will help to develop strategies for engineering Cd(2+) stress tolerance in economically important crop plants.


Assuntos
Cádmio/toxicidade , ATPases Transportadoras de Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nicotiana/enzimologia , Antioxidantes/metabolismo , ATPases Transportadoras de Cálcio/genética , Homeostase/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Estresse Oxidativo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/fisiologia , Xilema/efeitos dos fármacos , Xilema/enzimologia , Xilema/genética , Xilema/fisiologia
4.
PLoS One ; 9(5): e98287, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24879307

RESUMO

BACKGROUND: The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum) and its novel function in salinity stress tolerance in plant. RESULTS: The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS) accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. CONCLUSIONS: To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.


Assuntos
RNA Helicases DEAD-box/genética , Nicotiana/genética , Nicotiana/metabolismo , Estresse Oxidativo/genética , Fotossíntese/genética , Pisum sativum/enzimologia , Salinidade , Clorofila/metabolismo , Clonagem Molecular , RNA Helicases DEAD-box/metabolismo , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Germinação/genética , Pisum sativum/genética , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento , Potássio/metabolismo , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/fisiologia , Sódio/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/fisiologia
5.
Plant Signal Behav ; 92014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24785194

RESUMO

Helicases are molecular motor proteins that perform a variety of cellular functions including transcription, translation, DNA replication and repair, RNA maturation, ribosome synthesis, nuclear export and splicing processes. The p68 is an evolutionarily conserved protein which plays pivotal roles in all aspect RNA metabolism processes. It is well established that helicases provides abiotic stress adaptation in plants but analysis of cis-regulatory elements present in the upstream regions is still infancy. Here we report isolation and functional characterization of the promoter of a DEAD-box helicase Psp68 in response to abiotic stress and hormonal regulation. The promoter of Psp68 was isolated by gene walking PCR from pea genomic DNA library constructed in BD genome walker kit. In silico analysis revealed that promoter of Psp68 contained a TATA, a CAAT motif and also harbors some important stress and hormone associated cis regulatory elements, including E-box, AGAAA, GATA-box, ACGT, GAAAA and GTCTC. Functional analyses were performed by Agrobacterium-mediated transient assay in tobacco leaves. Very high level of GUS activity was observed in agroinfiltrated tobacco leaves by the construct carrying the Psp68 promoter::GUS, subjected to abiotic stress and exogenous hormonal treatments. Stress-inducible nature of Psp68 promoter opens possibility for the study of the gene regulation under stress condition. Therefore, may be useful in the field of agriculture and biotechnology.

6.
J Exp Bot ; 64(11): 3099-109, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23918957

RESUMO

Food security is in danger under the continuous growing threat of various stresses including climate change and global warming, which ultimately leads to a reduction in crop yields. Calcium plays a very important role in many signal transduction pathways including stress signalling. Different extracellular stimuli trigger increases in cytosolic calcium, which is detrimental to plants. To cope with such stresses, plants need to develop efficient efflux mechanisms to maintain ionic homeostasis. The Ca(2+)-ATPases are members of the P-type ATPase superfamily, which perform many fundamental processes in organisms by actively transporting ions across cellular membranes. In recent years, many studies have revealed that, as well as efflux mechanisms, Ca(2+)-ATPases also play critical roles in sensing calcium fluctuations and relaying downstream signals by activating definitive targets, thus modulating corresponding metabolic pathways. As calcium-activated calmodulin (CaM) is reported to play vital roles in stress tolerance, the presence of a unique CaM-binding site in type IIB Ca(2+)-ATPases indicates their potential role in biotic as well as abiotic stress tolerance. The key roles of Ca(2+)-ATPases in transport systems and stress signalling in cellular homeostasis are addressed in this review. A complete understanding of plant defence mechanisms under stress will allow bioengineering of improved crop plants, which will be crucial for food security currently observed worldwide in the context of global climate changes. Overall, this article covers classification, evolution, structural aspects of Ca(2+)-ATPases, and their emerging roles in plant stress signalling.


Assuntos
Agricultura , ATPases Transportadoras de Cálcio/metabolismo , Plantas/enzimologia , Plantas/metabolismo , ATPases Transportadoras de Cálcio/genética , Calmodulina/genética , Calmodulina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
Plant Signal Behav ; 8(10): doi: 10.4161/psb.25891, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23921544

RESUMO

An efficient method for in vitro micro propagation and genetic transformation of plants are crucial for both basic and applied research. Maize is one of the most important cereal crops around the world. Regeneration from immature embryo is hampered due to its unavailability round the year. On the contrary mature embryo especially tropical maize is recalcitrant toward tissue culture. Here we report a highly efficient regeneration (90%) system for maize by using 2 different approaches i.e., embryogenic and organogenic callus cultures. Seeds were germinated on MS medium supplemented with 5 mg/l 2,4-D and 3 mg/l BAP. Nodal regions of 2 wks old seedlings were longitudinally split upon isolation and subsequently placed on callus initiation medium. The maximum frequency of embryogenic callus formation (90%) was obtained on MS medium supplemented with 2 mg/l 2,4-D and 1 mg/l BAP in the dark conditions. The compact granular organogenic callus formation (85% frequency) was obtained on MS medium supplemented with 2.5 mg/l 2,4-D and 1.5 mg/l BAP at light conditions. MS medium supplemented with 2 mg/l BAP, 1 mg/l Kinetin and 0.5 mg/l NAA promoted the highest frequency of shoot induction. The highest frequency of root formation was observed when shoots were grown on MS medium. The regenerated plants were successfully hardened in earthen pots after adequate acclimatization. The important advantage of this improved method is shortening of regeneration time by providing an efficient and rapid regeneration tool for obtaining more stable transformants from mature seeds of Indian tropical maize cultivar (HQPM-1).


Assuntos
Regeneração/fisiologia , Sementes/metabolismo , Sementes/fisiologia , Zea mays/metabolismo , Zea mays/fisiologia , Ácido 2,4-Diclorofenoxiacético/metabolismo
8.
PLoS One ; 8(3): e57803, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469243

RESUMO

BACKGROUND: Plasma membrane Ca(2+)ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+)) from the cell, hence regulating Ca(2+) level within cells. Though plant Ca(2+)ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. RESULTS: The 1478 bp promoter sequence of rice plasma membrane Ca(2+)ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+)ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs. CONCLUSIONS: The rice plasma membrane Ca(2+)ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible nature of this promoter could grant wide applicability in plant biotechnology.


Assuntos
Membrana Celular/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Brotos de Planta/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Sequência de Bases , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Ciclopentanos/farmacologia , Secas , Dados de Sequência Molecular , Mutação , Oryza/efeitos dos fármacos , Oryza/enzimologia , Oxilipinas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/enzimologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Polietilenoglicóis/farmacologia , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodução , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...