Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746366

RESUMO

Complex neuronal interactions underlie cortical information processing that can be compromised in altered states of consciousness. Here intracortical microstimulation was applied to investigate the state-dependent effective connectivity of neurons in rat visual cortex in vivo. Extracellular activity was recorded at 32 sites in layers 5/6 while stimulating with charge-balanced discrete pulses at each electrode in random order. The same stimulation pattern was applied at three levels of anesthesia with desflurane and in wakefulness. Spikes were sorted and classified by their waveform features as putative excitatory and inhibitory neurons. Microstimulation caused early (<10ms) increase followed by prolonged (11-100ms) decrease in spiking of all neurons throughout the electrode array. The early response of excitatory but not inhibitory neurons decayed rapidly with distance from the stimulation site over 1mm. Effective connectivity of neurons with significant stimulus response was dense in wakefulness and sparse under anesthesia. Network motifs were identified in graphs of effective connectivity constructed from monosynaptic cross-correlograms. The number of motifs, especially those of higher order, increased rapidly as the anesthesia was withdrawn indicating a substantial increase in network connectivity as the animals woke up. The results illuminate the impact of anesthesia on functional integrity of local circuits affecting the state of consciousness.

2.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659759

RESUMO

Consciousness requires a dynamic balance of integration and segregation in functional brain networks. An optimal integration-segregation balance depends on two key aspects of functional connectivity: global efficiency (i.e., integration) and clustering (i.e., segregation). We developed a new fMRI-based measure, termed the integration-segregation difference (ISD), which captures both aspects. We used this metric to quantify changes in brain state from conscious wakefulness to loss of responsiveness induced by the anesthetic propofol. The observed changes in ISD suggest a profound shift to segregation in both whole brain and all brain subnetworks during anesthesia. Moreover, brain networks displayed similar sequences of disintegration and subsequent reintegration during, respectively, loss and return of responsiveness. Random forest machine learning models, trained with the integration and segregation of brain networks, identified the awake vs. unresponsive states and their transitions with accuracy up to 93%. We found that metastability (i.e., the dynamic recurrence of non-equilibrium transient states) is more effectively explained by integration, while complexity (i.e., diversity and intricacy of neural activity) is more closely linked with segregation. The analysis of a sleep dataset revealed similar findings. Our results demonstrate that the integration-segregation balance is a useful index that can differentiate among various conscious and unconscious states.

3.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328136

RESUMO

Research into the role of thalamocortical circuits in anesthesia-induced unconsciousness is difficult due to anatomical and functional complexity. Prior neuroimaging studies have examined either the thalamus as a whole or focused on specific subregions, overlooking the distinct neuronal subtypes like core and matrix cells. We conducted a study of heathy volunteers and functional magnetic resonance imaging during conscious baseline, deep sedation, and recovery. We advanced the functional gradient mapping technique to delineate the functional geometry of thalamocortical circuits, within a framework of the unimodal-transmodal functional axis of the cortex. We observed a significant shift in this geometry during unconsciousness, marked by the dominance of unimodal over transmodal geometry. This alteration was closely linked to the spatial variations in the density of matrix cells within the thalamus. This research bridges cellular and systems-level understanding, highlighting the crucial role of thalamic core-matrix functional architecture in understanding the neural mechanisms of states of consciousness.

4.
Cell Rep ; 43(1): 113633, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38159279

RESUMO

Arousal and awareness are two components of consciousness whose neural mechanisms remain unclear. Spontaneous peaks of global (brain-wide) blood-oxygenation-level-dependent (BOLD) signal have been found to be sensitive to changes in arousal. By contrasting BOLD signals at different arousal levels, we find decreased activation of the ventral posterolateral nucleus (VPL) during transient peaks in the global signal in low arousal and awareness states (non-rapid eye movement sleep and anesthesia) compared to wakefulness and in eyes-closed compared to eyes-open conditions in healthy awake individuals. Intriguingly, VPL-global co-activation remains high in patients with unresponsive wakefulness syndrome (UWS), who exhibit high arousal without awareness, while it reduces in rapid eye movement sleep, a state characterized by low arousal but high awareness. Furthermore, lower co-activation is found in individuals during N3 sleep compared to patients with UWS. These results demonstrate that co-activation of VPL and global activity is critical to arousal but not to awareness.


Assuntos
Sono , Núcleos Ventrais do Tálamo , Humanos , Sono/fisiologia , Nível de Alerta/fisiologia , Vigília/fisiologia , Encéfalo/fisiologia , Eletroencefalografia
5.
Commun Biol ; 6(1): 1284, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114805

RESUMO

Despite the longstanding use of nitrous oxide and descriptions of its psychological effects more than a century ago, there is a paucity of neurobiological investigation of associated psychedelic experiences. We measure the brain's functional geometry (through analysis of cortical gradients) and temporal dynamics (through analysis of co-activation patterns) using human resting-state functional magnetic resonance imaging data acquired before and during administration of 35% nitrous oxide. Both analyses demonstrate that nitrous oxide reduces functional differentiation in frontoparietal and somatomotor networks. Importantly, the subjective psychedelic experience induced by nitrous oxide is inversely correlated with the degree of functional differentiation. Thus, like classical psychedelics acting on serotonin receptors, nitrous oxide flattens the functional geometry of the cortex and disrupts temporal dynamics in association with psychoactive effects.


Assuntos
Alucinógenos , Humanos , Alucinógenos/farmacologia , Óxido Nitroso
6.
Camb Q Healthc Ethics ; : 1-21, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850471

RESUMO

Organoids and specifically human cerebral organoids (HCOs) are one of the most relevant novelties in the field of biomedical research. Grown either from embryonic or induced pluripotent stem cells, HCOs can be used as in vitro three-dimensional models, mimicking the developmental process and organization of the developing human brain. Based on that, and despite their current limitations, it cannot be assumed that they will never at any stage of development manifest some rudimentary form of consciousness. In the absence of behavioral indicators of consciousness, the theoretical neurobiology of consciousness being applied to unresponsive brain-injured patients can be considered with respect to HCOs. In clinical neurology, it is difficult to discern a capacity for consciousness in unresponsive brain-injured patients who provide no behavioral indicators of consciousness. In such scenarios, a validated neurobiological theory of consciousness, which tells us what the neural mechanisms of consciousness are, could be used to identify a capacity for consciousness. Like the unresponsive patients that provide a diagnostic difficulty for neurologists, HCOs provide no behavioral indicators of consciousness. Therefore, this article discusses how three prominent neurobiological theories of consciousness apply to human cerebral organoids. From the perspective of the Temporal Circuit Hypothesis, the Global Neuronal Workspace Theory, and the Integrated Information Theory, we discuss what neuronal structures and functions might indicate that cerebral organoids have a neurobiological capacity to be conscious.

7.
Neuroscience ; 528: 54-63, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473851

RESUMO

Recurring spike sequences are thought to underlie cortical computations and may be essential for information processing in the conscious state. How anesthesia at graded levels may influence spontaneous and stimulus-related spike sequences in visual cortex has not been fully elucidated. We recorded extracellular single-unit activity in the rat primary visual cortex in vivo during wakefulness and three levels of anesthesia produced by desflurane. The latencies of spike sequences within 0-200 ms from the onset of spontaneous UP states and visual flash-evoked responses were compared. During wakefulness, spike latency patterns linked to the local field potential theta cycle were similar to stimulus-evoked patterns. Under desflurane anesthesia, spontaneous UP state sequences differed from flash-evoked sequences due to the recruitment of low-firing excitatory neurons to the UP state. Flash-evoked spike sequences showed higher reliability and longer latency when stimuli were applied during DOWN states compared to UP states. At deeper levels, desflurane altered both UP state and flash-evoked spike sequences by selectively suppressing inhibitory neuron firing. The results reveal desflurane-induced complex changes in cortical firing sequences that may influence visual information processing.


Assuntos
Anestesia , Anestésicos Inalatórios , Ratos , Animais , Desflurano , Anestésicos Inalatórios/farmacologia , Estimulação Luminosa , Reprodutibilidade dos Testes
9.
Front Syst Neurosci ; 17: 1157488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139471

RESUMO

Cortical information processing is under the precise control of the ascending arousal system (AAS). Anesthesia suppresses cortical arousal that can be mitigated by exogenous stimulation of the AAS. The question remains to what extent cortical information processing is regained by AAS stimulation. We investigate the effect of electrical stimulation of the nucleus Pontis Oralis (PnO), a distinct source of ascending AAS projections, on cortical functional connectivity (FC) and information storage at mild, moderate, and deep anesthesia. Local field potentials (LFPs) recorded previously in the secondary visual cortex (V2) and the adjacent parietal association cortex (PtA) in chronically instrumented unrestrained rats. We hypothesized that PnO stimulation would induce electrocortical arousal accompanied by enhanced FC and active information storage (AIS) implying improved information processing. In fact, stimulation reduced FC in slow oscillations (0.3-2.5 Hz) at low anesthetic level and increased FC at high anesthetic level. These effects were augmented following stimulation suggesting stimulus-induced plasticity. The observed opposite stimulation-anesthetic impact was less clear in the γ-band activity (30-70 Hz). In addition, FC in slow oscillations was more sensitive to stimulation and anesthetic level than FC in γ-band activity which exhibited a rather constant spatial FC structure that was symmetric between specific, topographically related sites in V2 and PtA. Invariant networks were defined as a set of strongly connected electrode channels, which were invariant to experimental conditions. In invariant networks, stimulation decreased AIS and increasing anesthetic level increased AIS. Conversely, in non-invariant (complement) networks, stimulation did not affect AIS at low anesthetic level but increased it at high anesthetic level. The results suggest that arousal stimulation alters cortical FC and information storage as a function of anesthetic level with a prolonged effect beyond the duration of stimulation. The findings help better understand how the arousal system may influence information processing in cortical networks at different levels of anesthesia.

10.
Neuroimage ; 273: 120097, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031827

RESUMO

The neurobiology of the psychedelic experience is not fully understood. Identifying common brain network changes induced by both classical (i.e., acting at the 5-HT2 receptor) and non-classical psychedelics would provide mechanistic insight into state-specific characteristics. We analyzed whole-brain functional connectivity based on resting-state fMRI data in humans, acquired before and during the administration of nitrous oxide, ketamine, and lysergic acid diethylamide. We report that, despite distinct molecular mechanisms and modes of delivery, all three psychedelics reduced within-network functional connectivity and enhanced between-network functional connectivity. More specifically, all three drugs increased connectivity between right temporoparietal junction and bilateral intraparietal sulcus as well as between precuneus and left intraparietal sulcus. These regions fall within the posterior cortical "hot zone," posited to mediate the qualitative aspects of experience. Thus, both classical and non-classical psychedelics modulate networks within an area of known relevance for consciousness, identifying a biologically plausible candidate for their subjective effects.


Assuntos
Alucinógenos , Ketamina , Humanos , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Encéfalo , Ketamina/farmacologia , Estado de Consciência
11.
Clin Neurophysiol ; 147: 81-87, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739618

RESUMO

OBJECTIVE: The objective of this study was to identify differences in electroencephalographic microstate topographies across three perioperative phases: anesthetic pre-induction, surgical anesthesia, and post-anesthesia care unit (PACU) admission. METHODS: Whole-scalp 16-channel electroencephalographic recordings were taken throughout the perioperative period on n = 22 adult, non-cardiac surgical patients. RESULTS: Several differences between perioperative periods were identified. Most notably, during surgical anesthesia, patients demonstrated increased mean duration and, consequently, a reduction in the occurrence of microstates when compared to both preoperative baseline and PACU admission. We also observed the presence of microstate F with propofol anesthesia during surgery, which had been previously identified with propofol infusion in laboratory settings using human volunteers. Finally, we observed inverse age effects with mean occurrence and duration of microstates, particularly during PACU recovery. CONCLUSIONS: Microstate duration is significantly increased during surgery compared to both pre-induction and PACU recovery. These data suggest that microstate topographies may be useful in monitoring anesthetic depth. SIGNIFICANCE: This work highlights the potential for microstate analysis in the perioperative setting. We identified distinct topographical signatures across perioperative periods and with increasing age, which is predictive of post-operative delirium.


Assuntos
Anestesia , Propofol , Adulto , Humanos , Eletroencefalografia , Inconsciência , Encéfalo/fisiologia
12.
Nat Commun ; 14(1): 72, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604428

RESUMO

Consciousness is a multidimensional phenomenon, but key dimensions such as awareness and wakefulness have been described conceptually rather than neurobiologically. We hypothesize that dimensions of consciousness are encoded in multiple neurofunctional dimensions of the brain. We analyze cortical gradients, which are continua of the brain's overarching functional geometry, to characterize these neurofunctional dimensions. We demonstrate that disruptions of human consciousness - due to pharmacological, neuropathological, or psychiatric causes - are associated with a degradation of one or more of the major cortical gradients depending on the state. Network-specific reconfigurations within the multidimensional cortical gradient space are associated with behavioral unresponsiveness of various etiologies, and these spatial reconfigurations correlate with a temporal disruption of structured transitions of dynamic brain states. In this work, we therefore provide a unifying neurofunctional framework for multiple dimensions of human consciousness in both health and disease.


Assuntos
Encéfalo , Estado de Consciência , Humanos , Vigília , Mapeamento Encefálico/métodos
13.
PLoS Comput Biol ; 18(6): e1009743, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737717

RESUMO

General anesthetics work through a variety of molecular mechanisms while resulting in the common end point of sedation and loss of consciousness. Generally, the administration of common anesthetics induces reduction in synaptic excitation while promoting synaptic inhibition. Exogenous modulation of the anesthetics' synaptic effects can help determine the neuronal pathways involved in anesthesia. For example, both animal and human studies have shown that exogenously induced increases in acetylcholine in the brain can elicit wakeful-like behavior despite the continued presence of the anesthetic. However, the underlying mechanisms of anesthesia reversal at the cellular level have not been investigated. Here we apply a computational model of a network of excitatory and inhibitory neurons to simulate the network-wide effects of anesthesia, due to changes in synaptic inhibition and excitation, and their reversal by cholinergic activation through muscarinic receptors. We use a differential evolution algorithm to fit model parameters to match measures of spiking activity, neuronal connectivity, and network dynamics recorded in the visual cortex of rodents during anesthesia with desflurane in vivo. We find that facilitating muscarinic receptor effects of acetylcholine on top of anesthetic-induced synaptic changes predicts the reversal of anesthetic suppression of neurons' spiking activity, functional connectivity, as well as pairwise and population interactions. Thus, our model predicts a specific neuronal mechanism for the cholinergic reversal of anesthesia consistent with experimental behavioral observations.


Assuntos
Anestesia , Anestésicos Gerais , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Anestésicos Gerais/farmacologia , Animais , Córtex Cerebral/fisiologia , Colinérgicos/farmacologia
14.
Neuroimage Clin ; 33: 102951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35134706

RESUMO

The neural mechanism that enables the recovery of consciousness in patients with unresponsive wakefulness syndrome (UWS) remains unclear. The aim of the current study is to characterize the cortical hub regions related to the recovery of consciousness. In the current fMRI study, voxel-wise degree centrality analysis was adopted to identify the cortical hubs related to the recovery of consciousness, for which a total of 27 UWS patients were recruited, including 13 patients who emerged from UWS (UWS-E), and 14 patients who remained in UWS (UWS-R) at least three months after the experiment performance. Furthermore, other recoverable unconscious states were adopted as validation groups, including three independent N3 sleep datasets (n = 12, 9, 9 respectively) and three independent anesthesia datasets (n = 27, 14, 6 respectively). Spatial similarity of the hub characteristic with the validation groups between the UWS-E and UWS-R was compared using the dice coefficient. Finally, with the cortical regions persistently shown as hubs across UWS-E and validation states, functional connectivity analysis was further performed to explore the connectivity patterns underlying the recovery of consciousness. The results identified four cortical hubs in the UWS-E, which showed significantly higher degree centrality for UWS-E than UWS-R, including the anterior precuneus, left inferior parietal lobule, left inferior frontal gyrus, and left middle frontal gyrus, of which the degree centrality value also positively correlated with the patients' Glasgow Outcome Scale (GOS) score that assessed global brain functioning outcome after a brain injury. Furthermore, the anterior precuneus was found with significantly higher similarity of hub characteristics as well as functional connectivity patterns between UWS-E and the validation groups. The results suggest that the recovery of consciousness may be relevant to the integrity of cortical hubs in the recoverable unconscious states, especially the anterior precuneus. The identified cortical hub regions could serve as potential treatment targets for patients with UWS.


Assuntos
Lesões Encefálicas , Estado de Consciência , Transtornos da Consciência/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal/diagnóstico por imagem , Vigília
15.
Front Comput Neurosci ; 15: 738362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690730

RESUMO

In a cerebral hypometabolic state, cortical neurons exhibit slow synchronous oscillatory activity with sparse firing. How such a synchronization spatially organizes as the cerebral metabolic rate decreases have not been systemically investigated. We developed a network model of leaky integrate-and-fire neurons with an additional dependency on ATP dynamics. Neurons were scattered in a 2D space, and their population activity patterns at varying ATP levels were simulated. The model predicted a decrease in firing activity as the ATP production rate was lowered. Under hypometabolic conditions, an oscillatory firing pattern, that is, an ON-OFF cycle arose through a failure of sustainable firing due to reduced excitatory positive feedback and rebound firing after the slow recovery of ATP concentration. The firing rate oscillation of distant neurons developed at first asynchronously that changed into burst suppression and global synchronization as ATP production further decreased. These changes resembled the experimental data obtained from anesthetized rats, as an example of a metabolically suppressed brain. Together, this study substantiates a novel biophysical mechanism of neuronal network synchronization under limited energy supply conditions.

16.
Cell Rep ; 35(5): 109081, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33951427

RESUMO

Conscious access to sensory information is likely gated at an intermediate site between primary sensory and transmodal association cortices, but the structure responsible remains unknown. We perform functional neuroimaging to determine the neural correlates of conscious access using a volitional mental imagery task, a report paradigm not confounded by motor behavior. Titrating propofol to loss of behavioral responsiveness in healthy volunteers creates dysfunction of the anterior insular cortex (AIC) in association with an impairment of dynamic transitions of default-mode and dorsal attention networks. Candidate subcortical regions mediating sensory gating or arousal (thalamus, basal forebrain) fail to show this association. The gating role of the AIC is consistent with findings in awake participants, whose conscious access is predicted by pre-stimulus AIC activity near perceptual threshold. These data support the hypothesis that AIC, situated at an intermediate position of the cortical hierarchy, regulates brain network transitions that gate conscious access.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Córtex Insular/patologia , Voluntários Saudáveis , Humanos
17.
Neuroimage ; 236: 118042, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848623

RESUMO

Anesthetics are known to disrupt neural interactions in cortical and subcortical brain circuits. While the effect of anesthetic drugs on consciousness is reversible, the neural mechanism mediating induction and recovery may be different. Insight into these distinct mechanisms can be gained from a systematic comparison of neural dynamics during slow induction of and emergence from anesthesia. To this end, we used functional magnetic resonance imaging (fMRI) data obtained in healthy volunteers before, during, and after the administration of propofol at incrementally adjusted target concentrations. We analyzed functional connectivity of corticocortical and subcorticocortical networks and the temporal autocorrelation of fMRI signal as an index of neural processing timescales. We found that en route to unconsciousness, temporal autocorrelation across the entire brain gradually increased, whereas functional connectivity gradually decreased. In contrast, regaining consciousness was associated with an abrupt restoration of cortical but not subcortical temporal autocorrelation and an abrupt boost of subcorticocortical functional connectivity. Pharmacokinetic effects could not account for the difference in neural dynamics between induction and emergence. We conclude that the induction and recovery phases of anesthesia follow asymmetric neural dynamics. A rapid increase in the speed of cortical neural processing and subcorticocortical neural interactions may be a mechanism that reboots consciousness.


Assuntos
Anestesia , Anestésicos Intravenosos/farmacologia , Conectoma , Transtornos da Consciência/induzido quimicamente , Transtornos da Consciência/fisiopatologia , Estado de Consciência , Rede Nervosa , Propofol/farmacologia , Adulto , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/farmacocinética , Estado de Consciência/efeitos dos fármacos , Estado de Consciência/fisiologia , Transtornos da Consciência/diagnóstico por imagem , Feminino , Humanos , Imaginação/efeitos dos fármacos , Imaginação/fisiologia , Imageamento por Ressonância Magnética , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Propofol/administração & dosagem , Propofol/farmacocinética , Adulto Jovem
18.
Neuroimage ; 231: 117850, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582277

RESUMO

Consciousness is a mental characteristic of the human mind, whose exact neural features remain unclear. We aimed to identify the critical nodes within the brain's global functional network that support consciousness. To that end, we collected a large fMRI resting state dataset with subjects in at least one of the following three consciousness states: preserved (including the healthy awake state, and patients with a brain injury history (BI) that is fully conscious), reduced (including the N1-sleep state, and minimally conscious state), and lost (including the N3-sleep state, anesthesia, and unresponsive wakefulness state). We also included a unique dataset of subjects in rapid eye movement sleep state (REM-sleep) to test for the presence of consciousness with minimum movements and sensory input. To identify critical nodes, i.e., hubs, within the brain's global functional network, we used a graph-theoretical measure of degree centrality conjoined with ROI-based functional connectivity. Using these methods, we identified various higher-order sensory and motor regions including the supplementary motor area, bilateral supramarginal gyrus (part of inferior parietal lobule), supragenual/dorsal anterior cingulate cortex, and left middle temporal gyrus, that could be important hubs whose degree centrality was significantly reduced when consciousness was reduced or absent. Additionally, we identified a sensorimotor circuit, in which the functional connectivity among these regions was significantly correlated with levels of consciousness across the different groups, and remained present in the REM-sleep group. Taken together, we demonstrated that regions forming a higher-order sensorimotor integration circuit are involved in supporting consciousness within the brain's global functional network. That offers novel and more mechanism-guided treatment targets for disorders of consciousness.


Assuntos
Anestesia/métodos , Estado de Consciência/fisiologia , Rede Nervosa/fisiologia , Córtex Sensório-Motor/fisiologia , Sono REM/fisiologia , Vigília/fisiologia , Adulto , Anestésicos Intravenosos/administração & dosagem , Estado de Consciência/efeitos dos fármacos , Eletroencefalografia/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/efeitos dos fármacos , Sono REM/efeitos dos fármacos , Vigília/efeitos dos fármacos , Adulto Jovem
19.
Neuroscience ; 458: 108-119, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33309966

RESUMO

Cortical neurons display diverse firing patterns and synchronization properties. How anesthesia alters the firing response of different neuron groups relevant for sensory information processing is unclear. Here we investigated the graded effect of anesthesia on spontaneous and visual flash-induced spike activity of different neuron groups classified based on their spike waveform, firing rate, and population coupling (the extent neurons conform to population spikes). Single-unit activity was measured from multichannel extracellular recordings in deep layers of primary visual cortex of freely moving rats in wakefulness and at three concentrations of desflurane. Anesthesia generally decreased firing rate and increased population coupling and burstiness of neurons. Population coupling and firing rate became more correlated and the pairwise correlation between neurons became more predictable by their population coupling in anesthesia. During wakefulness, visual stimulation increased firing rate; this effect was the largest and the most prolonged in neurons that exhibited high population coupling and high firing rate. During anesthesia, the early increase in firing rate (20-150 ms post-stimulus) of these neurons was suppressed, their spike timing was delayed and split into two peaks. The late response (200-400 ms post-stimulus) of all neurons was also suppressed. We conclude that anesthesia alters the visual response of primarily high-firing highly coupled neurons, which may interfere with visual sensory processing. The increased association of population coupling and firing rate during anesthesia suggests a decrease in sensory information content.


Assuntos
Anestesia , Córtex Visual , Potenciais de Ação , Animais , Neurônios , Estimulação Luminosa , Ratos , Vigília
20.
J Neurosci ; 40(49): 9440-9454, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33122389

RESUMO

Understanding the effects of anesthesia on cortical neuronal spiking and information transfer could help illuminate the neuronal basis of the conscious state. Recent investigations suggest that the brain state identified by local field potential spectrum is not stationary but changes spontaneously at a fixed level of anesthetic concentration. How cortical unit activity changes with dynamically transitioning brain states under anesthesia is unclear. Extracellular unit activity was measured with 64-channel silicon microelectrode arrays in cortical layers 5/6 of the primary visual cortex of chronically instrumented, freely moving male rats (n = 7) during stepwise reduction of the anesthetic desflurane (6%, 4%, 2%, and 0%). Unsupervised machine learning applied to multiunit spike patterns revealed five distinct brain states. A novel desynchronized brain state with increased spike rate variability, sample entropy, and EMG activity occurred in 6% desflurane with 40.0% frequency. The other four brain states reflected graded levels of anesthesia. As anesthesia deepened the spike rate of neurons decreased regardless of their spike rate profile at baseline conscious state. Actively firing neurons with wide-spiking pattern showed increased bursting activity along with increased spike timing variability, unit-to-population correlation, and unit-to-unit transfer entropy, despite the overall decrease in transfer entropy. The narrow-spiking neurons showed similar changes but to a lesser degree. These results suggest that (1) anesthetic effect on spike rate is distinct from sleep, (2) synchronously fragmented spiking pattern is a signature of anesthetic-induced unconsciousness, and (3) the paradoxical, desynchronized brain state in deep anesthesia contends the generally presumed monotonic, dose-dependent anesthetic effect on the brain.SIGNIFICANCE STATEMENT Recent studies suggest that spontaneous changes in brain state occur under anesthesia. However, the spiking behavior of cortical neurons associated with such state changes has not been investigated. We found that local brain states defined by multiunit activity had a nonunitary relationship with the current anesthetic level. A paradoxical brain state displaying asynchronous firing pattern and high EMG activity was found unexpectedly in deep anesthesia. In contrast, the synchronous fragmentation of neuronal spiking appeared to be a robust signature of the state of anesthesia. The findings challenge the assumption of monotonic, anesthetic dose-dependent behavior of cortical neuron populations. They enhance the interpretation of neuroscientific data obtained under anesthesia and the understanding of the neuronal basis of anesthetic-induced state of unconsciousness.


Assuntos
Anestesia , Encéfalo/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Anestésicos Inalatórios/farmacologia , Animais , Desflurano/farmacologia , Relação Dose-Resposta a Droga , Eletrodos Implantados , Eletroencefalografia , Eletromiografia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Entropia , Espaço Extracelular/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Sono/fisiologia , Inconsciência/induzido quimicamente , Inconsciência/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...