Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(48): 44124-44133, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506149

RESUMO

In this work, we provide the first in vitro characterization of two essential proteins from Staphylococcus aureus (S. aureus) involved in iron-sulfur (Fe-S) cluster biogenesis: the cysteine desulfurase SufS and the sulfurtransferase SufU. Together, these proteins form the transient SufSU complex and execute the first stage of Fe-S cluster biogenesis in the SUF-like pathway in Gram-positive bacteria. The proteins involved in the SUF-like pathway, such as SufS and SufU, are essential in Gram-positive bacteria since these bacteria tend to lack redundant Fe-S cluster biogenesis pathways. Most previous work characterizing the SUF-like pathway has focused on Bacillus subtilis (B. subtilis). We focus on the SUF-like pathway in S. aureus because of its potential to serve as a therapeutic target to treat S. aureus infections. Herein, we characterize S. aureus SufS (SaSufS) by X-ray crystallography and UV-vis spectroscopy, and we characterize S. aureus SufU (SaSufU) by a zinc binding fluorescence assay and small-angle X-ray scattering. We show that SaSufS is a type II cysteine desulfurase and that SaSufU is a Zn2+-containing sulfurtransferase. Additionally, we evaluated the cysteine desulfurase activity of the SaSufSU complex and compared its activity to that of B. subtilis SufSU. Subsequent cross-species activity analysis reveals a surprising result: SaSufS is significantly less stimulated by SufU than BsSufS. Our results set a basis for further characterization of SaSufSU as well as the development of new therapeutic strategies for treating infections caused by S. aureus by inhibiting the SUF-like pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...