Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947294

RESUMO

Wound dressings when applied are in contact with wound exudates in vivo or with acceptor fluid when testing drug release from wound dressing in vitro. Therefore, the assessment of bidirectional mass transport phenomena in dressing after application on the substrate is important but has never been addressed in this context. For this reason, an in vitro wound dressing stack model was developed and implemented in the 3D printed holder. The stack was imaged using magnetic resonance imaging, i.e., relaxometric imaging was performed by means of T2 relaxation time and signal amplitude 1D profiles across the wound stack. As a substrate, fetal bovine serum or propylene glycol were used to simulate in vivo or in vitro cases. Multi-exponential analysis of the spatially resolved magnetic resonance signal enabled to distinguish components originating from water and propylene glycol in various environments. The spatiotemporal evolution of these components was assessed. The components were related to mass transport (water, propylene glycol) in the dressing/substrate system and subsequent changes of physicochemical properties of the dressing and adjacent substrate. Sharp changes in spatial profiles were detected and identified as moving fronts. It can be concluded that: (1) An attempt to assess mass transport phenomena was carried out revealing the spatial structure of the wound dressing in terms of moving fronts and corresponding layers; (2) Moving fronts, layers and their temporal evolution originated from bidirectional mass transport between wound dressing and substrate. The setup can be further applied to dressings containing drugs.

2.
AAPS PharmSciTech ; 17(3): 735-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26335419

RESUMO

In the last decade, imaging has been introduced as a supplementary method to the dissolution tests, but a direct relationship of dissolution and imaging data has been almost completely overlooked. The purpose of this study was to assess the feasibility of relating magnetic resonance imaging (MRI) and dissolution data to elucidate dissolution profile features (i.e., kinetics, kinetics changes, and variability). Commercial, hydroxypropylmethyl cellulose-based quetiapine fumarate controlled-release matrix tablets were studied using the following two methods: (i) MRI inside the USP4 apparatus with subsequent machine learning-based image segmentation and (ii) dissolution testing with piecewise dissolution modeling. Obtained data were analyzed together using statistical data processing methods, including multiple linear regression. As a result, in this case, zeroth order release was found to be a consequence of internal structure evolution (interplay between region's areas-e.g., linear relationship between interface and core), which eventually resulted in core disappearance. Dry core disappearance had an impact on (i) changes in dissolution kinetics (from zeroth order to nonlinear) and (ii) an increase in variability of drug dissolution results. It can be concluded that it is feasible to parameterize changes in micro/meso morphology of hydrated, controlled release, swellable matrices using MRI to establish a causal relationship between the changes in morphology and drug dissolution. Presented results open new perspectives in practical application of combined MRI/dissolution to controlled-release drug products.


Assuntos
Liberação Controlada de Fármacos , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacocinética , Fumarato de Quetiapina/química , Fumarato de Quetiapina/farmacocinética , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Solubilidade , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...