Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 214(Pt 15): 2631-40, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21753057

RESUMO

Terrestrial locomotion can impose substantial loads on vertebrate limbs. Previous studies have shown that limb bones from cursorial species of eutherian mammals experience high bending loads with minimal torsion, whereas the limb bones of non-avian reptiles (and amphibians) exhibit considerable torsion in addition to bending. It has been hypothesized that these differences in loading regime are related to the difference in limb posture between upright mammals and sprawling reptiles, and that the loading patterns observed in non-avian reptiles may be ancestral for tetrapod vertebrates. To evaluate whether non-cursorial mammals show loading patterns more similar to those of sprawling lineages, we measured in vivo strains in the femur during terrestrial locomotion of the Virginia opossum (Didelphis virginiana), a marsupial that uses more crouched limb posture than most mammals from which bone strains have been recorded, and which belongs to a clade phylogenetically between reptiles and the eutherian mammals studied previously. The presence of substantial torsion in the femur of opossums, similar to non-avian reptiles, would suggest that this loading regime likely reflects an ancestral condition for tetrapod limb bone design. Strain recordings indicate the presence of both bending and appreciable torsion (shear strain: 419.1 ± 212.8 µÎµ) in the opossum femur, with planar strain analyses showing neutral axis orientations that placed the lateral aspect of the femur in tension at the time of peak strains. Such mediolateral bending was unexpected for a mammal running with near-parasagittal limb kinematics. Shear strains were similar in magnitude to peak compressive axial strains, with opossum femora experiencing similar bending loads but higher levels of torsion compared with most previously studied mammals. Analyses of peak femoral strains led to estimated safety factor ranges of 5.1-7.2 in bending and 5.5-7.3 in torsion, somewhat higher than typical mammalian values for bending, but approaching typical reptilian values for shear. Loading patterns of opossum limb bones therefore appear intermediate in some respects between those of eutherian mammals and non-avian reptiles, providing further support for hypotheses that high torsion and elevated limb bone safety factors may represent persistent ancestral conditions in the evolution of tetrapod limb bone loading and design.


Assuntos
Didelphis/fisiologia , Fêmur/fisiologia , Membro Posterior/fisiologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Feminino , Locomoção , Masculino , Músculo Esquelético/fisiologia , Filogenia , South Carolina , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...