Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(17): 175002, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38728726

RESUMO

Strong-field quantum electrodynamics (SF QED) is a burgeoning research topic dealing with electromagnetic fields comparable to the Schwinger field (≈1.32×10^{18} V/m). While most past and proposed experiments rely on reaching this field in the rest frame of relativistic particles, the Schwinger limit could also be approached in the laboratory frame by focusing to its diffraction limit the light reflected by a plasma mirror irradiated by a multipetawatt laser. We explore the interaction between such intense light and matter with particle-in-cell simulations. We find that the collision with a relativistic electron beam would enable the study of the nonperturbative regime of SF QED, while the interaction with a solid target leads to a profusion of SF QED effects that retroact on the interaction. In both cases, relativistic attosecond pair jets with high densities are formed.

2.
Nat Commun ; 14(1): 4009, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419912

RESUMO

Laser plasma-based particle accelerators attract great interest in fields where conventional accelerators reach limits based on size, cost or beam parameters. Despite the fact that particle in cell simulations have predicted several advantageous ion acceleration schemes, laser accelerators have not yet reached their full potential in producing simultaneous high-radiation doses at high particle energies. The most stringent limitation is the lack of a suitable high-repetition rate target that also provides a high degree of control of the plasma conditions required to access these advanced regimes. Here, we demonstrate that the interaction of petawatt-class laser pulses with a pre-formed micrometer-sized cryogenic hydrogen jet plasma overcomes these limitations enabling tailored density scans from the solid to the underdense regime. Our proof-of-concept experiment demonstrates that the near-critical plasma density profile produces proton energies of up to 80 MeV. Based on hydrodynamic and three-dimensional particle in cell simulations, transition between different acceleration schemes are shown, suggesting enhanced proton acceleration at the relativistic transparency front for the optimal case.


Assuntos
Hidrogênio , Prótons , Lasers , Aceleradores de Partículas , Aceleração
3.
Sci Rep ; 10(1): 10780, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612095

RESUMO

With the rapid development of short-pulse intense laser sources, studies of matter under extreme irradiation conditions enter further unexplored regimes. In addition, an application of X-ray Free-Electron Lasers (XFELs) delivering intense femtosecond X-ray pulses, allows to investigate sample evolution in IR pump - X-ray probe experiments with an unprecedented time resolution. Here we present a detailed study of the periodic plasma created from the colloidal crystal. Both experimental data and theory modeling show that the periodicity in the sample survives to a large extent the extreme excitation and shock wave propagation inside the colloidal crystal. This feature enables probing the excited crystal, using the powerful Bragg peak analysis, in contrast to the conventional studies of dense plasma created from bulk samples for which probing with Bragg diffraction technique is not possible. X-ray diffraction measurements of excited colloidal crystals may then lead towards a better understanding of matter phase transitions under extreme irradiation conditions.

4.
Nat Commun ; 9(1): 5292, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30546015

RESUMO

Extreme field gradients intrinsic to relativistic laser-interactions with thin solid targets enable compact MeV proton accelerators with unique bunch characteristics. Yet, direct control of the proton beam profile is usually not possible. Here we present a readily applicable all-optical approach to imprint detailed spatial information from the driving laser pulse onto the proton bunch. In a series of experiments, counter-intuitively, the spatial profile of the energetic proton bunch was found to exhibit identical structures as the fraction of the laser pulse passing around a target of limited size. Such information transfer between the laser pulse and the naturally delayed proton bunch is attributed to the formation of quasi-static electric fields in the beam path by ionization of residual gas. Essentially acting as a programmable memory, these fields provide access to a higher level of proton beam manipulation.

5.
Sci Rep ; 7(1): 10248, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860614

RESUMO

We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 109 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (∅ 5 µm) and planar (20 µm × 2 µm). In both cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. This is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...