Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Res ; 102(3): e25295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515329

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia, characterized by deposition of extracellular amyloid-beta (Aß) aggregates and intraneuronal hyperphosphorylated Tau. Many AD risk genes, identified in genome-wide association studies (GWAS), are expressed in microglia, the innate immune cells of the central nervous system. Specific subtypes of microglia emerged in relation to AD pathology, such as disease-associated microglia (DAMs), which increased in number with age in amyloid mouse models and in human AD cases. However, the initial transcriptional changes in these microglia in response to amyloid are still unknown. Here, to determine early changes in microglia gene expression, hippocampal microglia from male APPswe/PS1dE9 (APP/PS1) mice and wild-type littermates were isolated and analyzed by RNA sequencing (RNA-seq). By bulk RNA-seq, transcriptomic changes were detected in hippocampal microglia from 6-months-old APP/PS1 mice. By performing single-cell RNA-seq of CD11c-positive and negative microglia from 6-months-old APP/PS1 mice and analysis of the transcriptional trajectory from homeostatic to CD11c-positive microglia, we identified a set of genes that potentially reflect the initial response of microglia to Aß.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Humanos , Lactente , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Camundongos Transgênicos , Microglia/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Placa Amiloide , Presenilina-1/genética , Transcriptoma
2.
Brain Behav Immun ; 107: 225-241, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36270437

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, the neuropathological formation of amyloid-beta (Aß) plaques and neurofibrillary tangles. The best cellular correlates of the early cognitive deficits in AD patients are synapse loss and gliosis. In particular, it is unclear whether the activation of microglia (microgliosis) has a neuroprotective or pathological role early in AD. Here we report that microgliosis is an early mediator of synaptic dysfunction and cognitive impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We found that the appearance of microgliosis, synaptic dysfunction and behavioral impairment coincided with increased soluble Aß42 levels, and occurred well before the presence of Aß plaques. Inhibition of microglial activity by treatment with minocycline (MC) reduced gliosis, synaptic deficits and cognitive impairments at early pathological stages and was most effective when provided preventive, i.e., before the onset of microgliosis. Interestingly, soluble Aß levels or Aß plaques deposition were not affected by preventive MC treatment at an early pathological stage (4 months) whereas these were reduced upon treatment at a later stage (6 months). In conclusion, this study demonstrates the importance of early-stage prevention of microgliosis on the development of cognitive impairment in APP/PS1 mice, which might be clinically relevant in preventing memory loss and delaying AD pathogenesis.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Transtornos da Memória/prevenção & controle
3.
Neurochem Res ; 48(4): 1026-1046, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35976488

RESUMO

Alzheimer's disease (AD) causes the majority of dementia cases worldwide. Early pathological hallmarks include the accumulation of amyloid-ß (Aß) and activation of both astrocytes and microglia. Neurons form the building blocks of the central nervous system, and astrocytes and microglia provide essential input for its healthy functioning. Their function integrates at the level of the synapse, which is therefore sometimes referred to as the "quad-partite synapse". Increasing evidence puts AD forward as a disease of the synapse, where pre- and postsynaptic processes, as well as astrocyte and microglia functioning progressively deteriorate. Here, we aim to review the current knowledge on how Aß accumulation functionally affects the individual components of the quad-partite synapse. We highlight a selection of processes that are essential to the healthy functioning of the neuronal synapse, including presynaptic neurotransmitter release and postsynaptic receptor functioning. We further discuss how Aß affects the astrocyte's capacity to recycle neurotransmitters, release gliotransmitters, and maintain ion homeostasis. We additionally review literature on how Aß changes the immunoprotective function of microglia during AD progression and conclude by summarizing our main findings and highlighting the challenges in current studies, as well as the need for further research.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Sistema Nervoso Central , Neurônios/patologia , Astrócitos/patologia , Microglia/patologia
4.
J Alzheimers Dis ; 89(1): 283-297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871343

RESUMO

BACKGROUND: Aging is characterized by systemic alterations and forms an important risk factor for Alzheimer's disease (AD). Recently, it has been indicated that blood-borne factors present in the systemic milieu contribute to the aging process. Exposing young mice to aged blood plasma results in impaired neurogenesis and synaptic plasticity in the dentate gyrus, as well as impaired cognition. Vice versa, treating aged mice with young blood plasma rescues impairments associated with aging. OBJECTIVE: Whether blood-borne factors are sufficient to drive impairments outside the dentate gyrus, how they impact neurophysiology, and how the functional outcome compares to impairments found in mouse models for AD is still unclear. METHODS: Here, we treated adult mice with blood plasma from aged mice and assessed neurophysiological parameters in the hippocampal CA1. RESULTS: Mice treated with aged blood plasma show significantly impaired levels of long-term potentiation (LTP), similar to those present in APP/PS1 mice. These impaired levels of LTP in plasma-treated mice are associated with alterations in basic properties of glutamatergic transmission and the enhanced activity of voltage-gated Ca2+ channels. CONCLUSION: Together, the data presented in this study show that blood-borne factors are sufficient to drive neurophysiological impairments in the hippocampal CA1.


Assuntos
Doença de Alzheimer , Neurofisiologia , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Hipocampo , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Plasma
5.
J Neurosci Res ; 100(6): 1281-1295, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35293016

RESUMO

Astrocytes are critical for healthy brain function. In Alzheimer's disease, astrocytes become reactive, which affects their signaling properties. Here, we measured spontaneous calcium transients ex vivo in hippocampal astrocytes in brain slices containing the dentate gyrus of 6- (6M) and 9-month-old (9M) APPswe/PSEN1dE9 (APP/PS1) mice. We investigated the frequency and duration of calcium transients in relation to aging, amyloid-ß (Aß) pathology, and the proximity of the astrocyte to Aß plaques. The 6M APP/PS1 astrocytes showed no change in spontaneous calcium-transient properties compared to wild-type (WT) astrocytes. 9M APP/PS1 astrocytes, however, showed more hyperactivity compared to WT, characterized by increased spontaneous calcium transients that were longer in duration. Our data also revealed an effect of aging, as 9M astrocytes overall showed an increase in calcium activity compared to 6M astrocytes. Subsequent calcium-wave analysis showed an increase in sequential calcium transients (i.e., calcium waves) in 9M astrocytes, suggesting increased network activity ex vivo. Further analysis using null models revealed that this network effect is caused by chance, due to the increased number of spontaneous transients. Our findings show that alterations in calcium signaling in individual hippocampal astrocytes of APP/PS1 mice are subject to both aging and Aß pathology but these do not lead to a change in astrocyte network activity. These alterations in calcium dynamics of astrocytes may help to understand changes in neuronal physiology leading to cognitive decline and ultimately dementia.


Assuntos
Doença de Alzheimer , Astrócitos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Giro Denteado/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Placa Amiloide
6.
Glia ; 70(4): 748-767, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981861

RESUMO

Alzheimer pathology is accompanied by astrogliosis. Reactive astrocytes surrounding amyloid plaques may directly affect neuronal communication, and one of the mechanisms by which astrocytes impact neuronal function is by affecting K+ homeostasis. Here we studied, using hippocampal slices from 9-month-old Alzheimer mice (APP/PS1) and wild-type littermates, whether astrocyte function is changed by analyzing Kir4.1 expression and function and astrocyte coupling in astrocytes surrounding amyloid-ß plaques. Immunohistochemical analysis of Kir4.1 protein in the dentate gyrus revealed localized increases in astrocytes surrounding amyloid-ß plaque deposits. We subsequently focused on changes in astrocyte function by using patch-clamp slice electrophysiology on both plaque- and non-plaque associated astrocytes to characterize general membrane properties. We found that Ba2+ -sensitive Kir4.1 conductance in astrocytes surrounding plaques was not affected by changes in Kir4.1 protein expression. Additional analysis of astrocyte gap junction coupling efficiency in the dentate gyrus revealed no apparent changes. Quantification of basic features of glutamatergic transmission to granule cells did not indicate disturbed neuronal communication in the dentate gyrus of APP/PS1 mice. Together, these results suggest that astrocytes in the dentate gyrus of APP/PS1 mice maintain their ability to buffer extracellular K+ and attempt to rectify imbalances in K+ concentration to maintain normal neuronal and synaptic function, possibly by localized increases in Kir4.1 protein expression. Our earlier transcriptomic data indicated that chronically activated astrocytes lose their neuronal support function. Here we show that, despite localized increased Kir4.1 protein expression, astrocyte Kir4.1 channel dysfunction is likely not involved in the pathogenesis of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Placa Amiloide , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Giro Denteado/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização
7.
J Mech Behav Biomed Mater ; 122: 104697, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271406

RESUMO

There is increasing evidence of altered tissue mechanics in neurodegeneration. However, due to difficulties in mechanical testing procedures and the complexity of the brain, there is still little consensus on the role of mechanics in the onset and progression of neurodegenerative diseases. In the case of Alzheimer's disease (AD), magnetic resonance elastography (MRE) studies have indicated viscoelastic differences in the brain tissue of AD patients and healthy controls. However, there is a lack of viscoelastic data from contact mechanical testing at higher spatial resolution. Therefore, we report viscoelastic maps of the hippocampus obtained by a dynamic indentation on brain slices from the APP/PS1 mouse model where individual brain regions are resolved. A comparison of viscoelastic parameters shows that regions in the hippocampus of the APP/PS1 mice are significantly stiffer than wild-type (WT) mice and have increased viscous dissipation. Furthermore, indentation mapping at the cellular scale directly on the plaques and their surroundings did not show local alterations in stiffness although overall mechanical heterogeneity of the tissue was high (SD∼40%).


Assuntos
Doença de Alzheimer , Animais , Encéfalo , Modelos Animais de Doenças , Hipocampo , Humanos , Camundongos , Camundongos Transgênicos
8.
Nat Commun ; 9(1): 731, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467419

RESUMO

Hyperdopaminergic states in mental disorders are associated with disruptive deficits in decision making. However, the precise contribution of topographically distinct mesencephalic dopamine pathways to decision-making processes remains elusive. Here we show, using a multidisciplinary approach, how hyperactivity of ascending projections from the ventral tegmental area (VTA) contributes to impaired flexible decision making in rats. Activation of the VTA-nucleus accumbens pathway leads to insensitivity to loss and punishment due to impaired processing of negative reward prediction errors. In contrast, activation of the VTA-prefrontal cortex pathway promotes risky decision making without affecting the ability to choose the economically most beneficial option. Together, these findings show how malfunction of ascending VTA projections affects value-based decision making, suggesting a potential mechanism through which increased forebrain dopamine signaling leads to aberrant behavior, as is seen in substance abuse, mania, and after dopamine replacement therapy in Parkinson's disease.


Assuntos
Tomada de Decisões , Dopamina/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/psicologia , Animais , Dopamina/análise , Humanos , Masculino , Transtornos Mentais/fisiopatologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Wistar , Assunção de Riscos , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...