Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R144-R152, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29590552

RESUMO

Products of the proopiomelanocortin (POMC) prohormone regulate aspects of analgesia, reward, and energy balance; thus, the neurons that produce POMC in the hypothalamus have received considerable attention. However, there are also cells in the nucleus of the solitary tract (NTS) that transcribe Pomc, although low levels of Pomc mRNA and relative lack of POMC peptide products in the adult mouse NTS have hindered the study of these cells. Therefore, studies of NTS POMC cells have largely relied on transgenic mouse lines. Here, we set out to determine the amino acid (AA) transmitter phenotype of NTS POMC neurons by using Pomc-Gfp transgenic mice to identify POMC cells. We found that cells expressing the green fluorescent protein (GFP) represent a mix of GABAergic and glutamatergic cells as indicated by Gad2 and vesicular Glut2 ( vGlut2) mRNA expression, respectively. We then examined the AA phenotype of POMC cells labeled by a Pomc-Cre transgene and found that these are also a mix of GABAergic and glutamatergic cells. However, the NTS cells labeled by the Gfp- and Cre-containing transgenes represented distinct populations of cells in three different Pomc-Cre mouse lines. Consistent with previous work, we were unable to reliably detect Pomc mRNA in the NTS despite clear expression in the hypothalamus. Thus, it was not possible to determine which transgenic tool most accurately identifies NTS cells that may express Pomc or release POMC peptides, although the results indicate the transgenic tools for study of these NTS neurons can label disparate populations of cells with varied AA phenotypes.


Assuntos
Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Núcleo Solitário/metabolismo , Animais , Feminino , Genótipo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização in Situ Fluorescente , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Pró-Opiomelanocortina/genética , Núcleo Solitário/citologia
2.
J Physiol ; 595(2): 571-582, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27531218

RESUMO

KEY POINTS: Hypothalamic proopiomelanocortin (POMC) neurons release peptide products that potently inhibit food intake and reduce body weight. These neurons also release the amino acid transmitter GABA, which can inhibit downstream neurons. Although the release of peptide transmitters from POMC neurons is regulated by energy state, whether similar regulation of GABA release might occur had not been examined. The present results show that the GABAergic phenotype of POMC neurons is decreased selectively by caloric deficit and not altered by high-fat diet or stress. The fact the GABAergic phenotype of POMC neurons is sensitive to energy state suggests a dynamic physiological role for this transmitter and highlights the importance of determining the functional consequence of GABA released from POMC neurons in terms of the regulation of normal energy balance. ABSTRACT: In addition to peptide transmitters, hypothalamic neurons, including proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons, also release amino acid transmitters that can alter energy balance regulation. While recent studies show that the GABAergic nature of AgRP neurons is increased by caloric restriction, whether the GABAergic phenotype of POMC neurons is also regulated in an energy-state-dependent manner has not been previously examined. The present studies used fluorescence in situ hybridization to detect Gad1 and Gad2 mRNA in POMC neurons, as these encode the glutamate decarboxylase enzymes GAD67 and GAD65, respectively. The results show that both short-term fasting and chronic caloric restriction significantly reduce the percentage of POMC neurons expressing Gad1 mRNA in both male and female mice, with less of an effect on Gad2 expression. Neither acute nor chronic intermittent restraint stress altered Gad1 expression in POMC neurons. Maintenance on a high-fat diet also did not affect the portion POMC neurons expressing Gad1, suggesting that the GABAergic phenotype of POMC neurons is particularly sensitive to energy deficit. Because changes in Gad1 expression have been previously shown to correlate with altered terminal GABA release, fasting is likely to cause a decrease in GABA release from POMC neurons. Altogether, the present results show that the GABAergic nature of POMC neurons can be dynamically regulated by energy state in a manner opposite to that in AgRP neurons and suggest the importance of considering the functional role of GABA release in addition to the peptide transmitters from POMC neurons.


Assuntos
Restrição Calórica , Neurônios GABAérgicos/fisiologia , Pró-Opiomelanocortina/genética , Animais , Dieta Hiperlipídica , Feminino , Glutamato Descarboxilase/genética , Hipotálamo/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Fenótipo , RNA Mensageiro/metabolismo
3.
Eur J Neurosci ; 42(9): 2644-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26370162

RESUMO

The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse.


Assuntos
Glutamato Descarboxilase/metabolismo , Hipotálamo/enzimologia , Potenciais Pós-Sinápticos Inibidores , Neurônios/enzimologia , Ácido gama-Aminobutírico/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Jejum/metabolismo , Feminino , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/fisiologia , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...