Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
MMWR Morb Mortal Wkly Rep ; 73(19): 435-440, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753567

RESUMO

Clade I monkeypox virus (MPXV), which can cause severe illness in more people than clade II MPXVs, is endemic in the Democratic Republic of the Congo (DRC), but the country has experienced an increase in suspected cases during 2023-2024. In light of the 2022 global outbreak of clade II mpox, the increase in suspected clade I cases in DRC raises concerns that the virus could spread to other countries and underscores the importance of coordinated, urgent global action to support DRC's efforts to contain the virus. To date, no cases of clade I mpox have been detected outside of countries in Central Africa where the virus is endemic. CDC and other partners are working to support DRC's response. In addition, CDC is enhancing U.S. preparedness by raising awareness, strengthening surveillance, expanding diagnostic testing capacity for clade I MPXV, ensuring appropriate specimen handling and waste management, emphasizing the importance of appropriate medical treatment, and communicating guidance on the recommended contact tracing, containment, behavior modification, and vaccination strategies.


Assuntos
Surtos de Doenças , Mpox , República Democrática do Congo/epidemiologia , Humanos , Estados Unidos/epidemiologia , Mpox/epidemiologia , Surtos de Doenças/prevenção & controle , Centers for Disease Control and Prevention, U.S. , Monkeypox virus/isolamento & purificação
3.
Am J Trop Med Hyg ; 110(3): 561-568, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320310

RESUMO

Incidence of human monkeypox (mpox) has been increasing in West and Central Africa, including in the Democratic Republic of Congo (DRC), where monkeypox virus (MPXV) is endemic. Most estimates of the pathogen's transmissibility in the DRC are based on data from the 1980s. Amid the global 2022 mpox outbreak, new estimates are needed to characterize the virus' epidemic potential and inform outbreak control strategies. We used the R package vimes to identify clusters of laboratory-confirmed mpox cases in Tshuapa Province, DRC. Cases with both temporal and spatial data were assigned to clusters based on the disease's serial interval and spatial kernel. We used the size of the clusters to infer the effective reproduction number, Rt, and the rate of zoonotic spillover of MPXV into the human population. Out of 1,463 confirmed mpox cases reported in Tshuapa Province between 2013 and 2017, 878 had both date of symptom onset and a location with geographic coordinates. Results include an estimated Rt of 0.82 (95% CI: 0.79-0.85) and a rate of 132 (95% CI: 122-143) spillovers per year assuming a reporting rate of 25%. This estimate of Rt is larger than most previous estimates. One potential explanation for this result is that Rt could have increased in the DRC over time owing to declining population-level immunity conferred by smallpox vaccination, which was discontinued around 1982. Rt could be overestimated if our assumption of one spillover event per cluster does not hold. Our results are consistent with increased transmissibility of MPXV in Tshuapa Province.


Assuntos
Mpox , Animais , Humanos , Mpox/epidemiologia , República Democrática do Congo/epidemiologia , Monkeypox virus , Zoonoses/epidemiologia , Surtos de Doenças
5.
Science ; 378(6619): 560-565, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36264825

RESUMO

Monkeypox is a viral zoonotic disease endemic in Central and West Africa. In May 2022, dozens of non-endemic countries reported hundreds of monkeypox cases, most with no epidemiological link to Africa. We identified two lineages of monkeypox virus (MPXV) among two 2021 and seven 2022 US monkeypox cases: the major 2022 outbreak variant called B.1 and a minor contemporaneously sampled variant called A.2. Analyses of mutations among these two variants revealed an extreme preference for GA-to-AA mutations indicative of human APOBEC3 cytosine deaminase activity among Clade IIb MPXV (previously West African, Nigeria) sampled since 2017. Such mutations were not enriched within other MPXV clades. These findings suggest that APOBEC3 editing may be a recurrent and a dominant driver of MPXV evolution within the current outbreak.


Assuntos
Desaminases APOBEC , Interações Hospedeiro-Patógeno , Monkeypox virus , Mpox , Edição de RNA , Humanos , Mpox/enzimologia , Mpox/virologia , Monkeypox virus/genética , Monkeypox virus/isolamento & purificação , Nigéria/epidemiologia , Estados Unidos/epidemiologia , Mutação , Evolução Molecular , Desaminases APOBEC/metabolismo , Adenosina/genética , Citidina/genética
6.
MMWR Morb Mortal Wkly Rep ; 71(32): 1018-1022, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35951487

RESUMO

Monkeypox, a zoonotic infection caused by an orthopoxvirus, is endemic in parts of Africa. On August 4, 2022, the U.S. Department of Health and Human Services declared the U.S. monkeypox outbreak, which began on May 17, to be a public health emergency (1,2). After detection of the first U.S. monkeypox case), CDC and health departments implemented enhanced monkeypox case detection and reporting. Among 2,891 cases reported in the United States through July 22 by 43 states, Puerto Rico, and the District of Columbia (DC), CDC received case report forms for 1,195 (41%) cases by July 27. Among these, 99% of cases were among men; among men with available information, 94% reported male-to-male sexual or close intimate contact during the 3 weeks before symptom onset. Among the 88% of cases with available data, 41% were among non-Hispanic White (White) persons, 28% among Hispanic or Latino (Hispanic) persons, and 26% among non-Hispanic Black or African American (Black) persons. Forty-two percent of persons with monkeypox with available data did not report the typical prodrome as their first symptom, and 46% reported one or more genital lesions during their illness; 41% had HIV infection. Data suggest that widespread community transmission of monkeypox has disproportionately affected gay, bisexual, and other men who have sex with men and racial and ethnic minority groups. Compared with historical reports of monkeypox in areas with endemic disease, currently reported outbreak-associated cases are less likely to have a prodrome and more likely to have genital involvement. CDC and other federal, state, and local agencies have implemented response efforts to expand testing, treatment, and vaccination. Public health efforts should prioritize gay, bisexual, and other men who have sex with men, who are currently disproportionately affected, for prevention and testing, while addressing equity, minimizing stigma, and maintaining vigilance for transmission in other populations. Clinicians should test patients with rash consistent with monkeypox,† regardless of whether the rash is disseminated or was preceded by prodrome. Likewise, although most cases to date have occurred among gay, bisexual, and other men who have sex with men, any patient with rash consistent with monkeypox should be considered for testing. CDC is continually evaluating new evidence and tailoring response strategies as information on changing case demographics, clinical characteristics, transmission, and vaccine effectiveness become available.§.


Assuntos
Exantema , Infecções por HIV , Mpox , Minorias Sexuais e de Gênero , Etnicidade , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Homossexualidade Masculina , Humanos , Masculino , Grupos Minoritários , Mpox/epidemiologia , Estados Unidos/epidemiologia
7.
MMWR Morb Mortal Wkly Rep ; 71(23): 764-769, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679181

RESUMO

On May 17, 2022, the Massachusetts Department of Public Health (MDPH) Laboratory Response Network (LRN) laboratory confirmed the presence of orthopoxvirus DNA via real-time polymerase chain reaction (PCR) from lesion swabs obtained from a Massachusetts resident. Orthopoxviruses include Monkeypox virus, the causative agent of monkeypox. Subsequent real-time PCR testing at CDC on May 18 confirmed that the patient was infected with the West African clade of Monkeypox virus. Since then, confirmed cases* have been reported by nine states. In addition, 28 countries and territories,† none of which has endemic monkeypox, have reported laboratory-confirmed cases. On May 17, CDC, in coordination with state and local jurisdictions, initiated an emergency response to identify, monitor, and investigate additional monkeypox cases in the United States. This response has included releasing a Health Alert Network (HAN) Health Advisory, developing interim public health and clinical recommendations, releasing guidance for LRN testing, hosting clinician and public health partner outreach calls, disseminating health communication messages to the public, developing protocols for use and release of medical countermeasures, and facilitating delivery of vaccine postexposure prophylaxis (PEP) and antivirals that have been stockpiled by the U.S. government for preparedness and response purposes. On May 19, a call center was established to provide guidance to states for the evaluation of possible cases of monkeypox, including recommendations for clinical diagnosis and orthopoxvirus testing. The call center also gathers information about possible cases to identify interjurisdictional linkages. As of May 31, this investigation has identified 17§ cases in the United States; most cases (16) were diagnosed in persons who identify as gay, bisexual, or men who have sex with men (MSM). Ongoing investigation suggests person-to-person community transmission, and CDC urges health departments, clinicians, and the public to remain vigilant, institute appropriate infection prevention and control measures, and notify public health authorities of suspected cases to reduce disease spread. Public health authorities are identifying cases and conducting investigations to determine possible sources and prevent further spread. This activity was reviewed by CDC and conducted consistent with applicable federal law and CDC policy.¶.


Assuntos
Malária , Mpox , Minorias Sexuais e de Gênero , Surtos de Doenças , Homossexualidade Masculina , Humanos , Malária/diagnóstico , Masculino , Mpox/diagnóstico , Mpox/epidemiologia , Vigilância da População , Viagem , Estados Unidos/epidemiologia
8.
MMWR Morb Mortal Wkly Rep ; 71(14): 509-516, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389974

RESUMO

Monkeypox is a rare, sometimes life-threatening zoonotic infection that occurs in west and central Africa. It is caused by Monkeypox virus, an orthopoxvirus similar to Variola virus (the causative agent of smallpox) and Vaccinia virus (the live virus component of orthopoxvirus vaccines) and can spread to humans. After 39 years without detection of human disease in Nigeria, an outbreak involving 118 confirmed cases was identified during 2017-2018 (1); sporadic cases continue to occur. During September 2018-May 2021, six unrelated persons traveling from Nigeria received diagnoses of monkeypox in non-African countries: four in the United Kingdom and one each in Israel and Singapore. In July 2021, a man who traveled from Lagos, Nigeria, to Dallas, Texas, became the seventh traveler to a non-African country with diagnosed monkeypox. Among 194 monitored contacts, 144 (74%) were flight contacts. The patient received tecovirimat, an antiviral for treatment of orthopoxvirus infections, and his home required large-scale decontamination. Whole genome sequencing showed that the virus was consistent with a strain of Monkeypox virus known to circulate in Nigeria, but the specific source of the patient's infection was not identified. No epidemiologically linked cases were reported in Nigeria; no contact received postexposure prophylaxis (PEP) with the orthopoxvirus vaccine ACAM2000.


Assuntos
Mpox , Humanos , Masculino , Mpox/diagnóstico , Mpox/epidemiologia , Mpox/prevenção & controle , Monkeypox virus/genética , Nigéria/epidemiologia , Texas/epidemiologia
9.
PLoS Pathog ; 17(9): e1009633, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34547055

RESUMO

Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.


Assuntos
Modelos Animais de Doenças , Varíola , Animais , Humanos , Camundongos , Vírus da Varíola
10.
J Infect Dis ; 223(11): 1870-1878, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33728469

RESUMO

BACKGROUND: Monkeypox is a poorly described emerging zoonosis endemic to Central and Western Africa. METHODS: Using surveillance data from Tshuapa Province, Democratic Republic of the Congo during 2011-2015, we evaluated differences in incidence, exposures, and clinical presentation of polymerase chain reaction-confirmed cases by sex and age. RESULTS: We report 1057 confirmed cases. The average annual incidence was 14.1 per 100 000 (95% confidence interval, 13.3-15.0). The incidence was higher in male patients (incidence rate ratio comparing males to females, 1.21; 95% confidence interval, 1.07-1.37), except among those 20-29 years old (0.70; .51-.95). Females aged 20-29 years also reported a high frequency of exposures (26.2%) to people with monkeypox-like symptoms.The highest incidence was among 10-19-year-old males, the cohort reporting the highest proportion of animal exposures (37.5%). The incidence was lower among those presumed to have received smallpox vaccination than among those presumed unvaccinated. No differences were observed by age group in lesion count or lesion severity score. CONCLUSIONS: Monkeypox incidence was twice that reported during 1980-1985, an increase possibly linked to declining immunity provided by smallpox vaccination. The high proportion of cases attributed to human exposures suggests changing exposure patterns. Cases were distributed across age and sex, suggesting frequent exposures that follow sociocultural norms.


Assuntos
Mpox , Adolescente , Adulto , Criança , República Democrática do Congo/epidemiologia , Feminino , Humanos , Masculino , Mpox/diagnóstico , Mpox/epidemiologia , Monkeypox virus/genética , Vacina Antivariólica , Adulto Jovem
11.
mSphere ; 6(1)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536322

RESUMO

Smallpox, caused by Variola virus (VARV), was eradicated in 1980; however, VARV bioterrorist threats still exist, necessitating readily available therapeutics. Current preparedness activities recognize the importance of oral antivirals and recommend therapeutics with different mechanisms of action. Monkeypox virus (MPXV) is closely related to VARV, causing a highly similar clinical human disease, and can be used as a surrogate for smallpox antiviral testing. The prairie dog MPXV model has been characterized and used to study the efficacy of antipoxvirus therapeutics, including recently approved TPOXX (tecovirimat). Brincidofovir (BCV; CMX001) has shown antiviral activity against double-stranded DNA viruses, including poxviruses. To determine the exposure of BCV following oral administration to prairie dogs, a pharmacokinetics (PK) study was performed. Analysis of BCV plasma concentrations indicated variability, conceivably due to the outbred nature of the animals. To determine BCV efficacy in the MPXV prairie dog model, groups of animals were intranasally challenged with 9 × 105 plaque-forming units (PFU; 90% lethal dose [LD90]) of MPXV on inoculation day 0 (ID0). Animals were divided into groups based on the first day of BCV treatment relative to inoculation day (ID-1, ID0, or ID1). A trend in efficacy was noted dependent upon treatment initiation (57% on ID-1, 43% on ID0, and 29% on ID1) but was lower than demonstrated in other animal models. Analysis of the PK data indicated that BCV plasma exposure (maximum concentration [Cmax]) and the time of the last quantifiable concentration (AUClast) were lower than in other animal models administered the same doses, indicating that suboptimal BCV exposure may explain the lower protective effect on survival.IMPORTANCE Preparedness activities against highly transmissible viruses with high mortality rates have been highlighted during the ongoing coronavirus disease 2019 (COVID-19) pandemic. Smallpox, caused by variola virus (VARV) infection, is highly transmissible, with an estimated 30% mortality. Through an intensive vaccination campaign, smallpox was declared eradicated in 1980, and routine smallpox vaccination of individuals ceased. Today's current population has little/no immunity against VARV. If smallpox were to reemerge, the worldwide results would be devastating. Recent FDA approval of one smallpox antiviral (tecovirimat) was a successful step in biothreat preparedness; however, orthopoxviruses can become resistant to treatment, suggesting the need for multiple therapeutics. Our paper details the efficacy of the investigational smallpox drug brincidofovir in a monkeypox virus (MPXV) animal model. Since brincidofovir has not been tested in vivo against smallpox, studies with the related virus MPXV are critical in understanding whether it would be protective in the event of a smallpox outbreak.


Assuntos
Citosina/análogos & derivados , Monkeypox virus/efeitos dos fármacos , Organofosfonatos/farmacologia , Organofosfonatos/farmacocinética , Varíola/tratamento farmacológico , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Benzamidas/farmacocinética , Benzamidas/farmacologia , Citosina/farmacocinética , Citosina/farmacologia , Modelos Animais de Doenças , Cães , Feminino , Isoindóis/farmacocinética , Isoindóis/farmacologia , Masculino , Vírus da Varíola/efeitos dos fármacos
13.
Am J Trop Med Hyg ; 104(2): 604-611, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33289470

RESUMO

Recent enhanced monkeypox (MPX) surveillance in the Democratic Republic of Congo, where MPX is endemic, has uncovered multiple cases of MPX and varicella zoster virus (VZV) coinfections. The purpose of this study was to verify if coinfections occur and to characterize the clinical nature of these cases. Clinical, epidemiological, and laboratory results were used to investigate MPX/VZV coinfections. A coinfection was defined as a patient with at least one Orthopoxvirus/MPX-positive sample and at least one VZV-positive sample within the same disease event. Between September 2009 and April 2014, 134 of the 1,107 (12.1%) suspected MPX cases were confirmed as MPX/VZV coinfections. Coinfections were more likely to report symptoms than VZV-alone cases and less likely than MPX-alone cases. Significantly higher lesion counts were observed for coinfection cases than for VZV-alone but less than MPX-alone cases. Discernible differences in symptom and rash severity were detected for coinfection cases compared with those with MPX or VZV alone. Findings indicate infection with both MPX and VZV could modulate infection severity. Collection of multiple lesion samples allows for the opportunity to detect coinfections. As this program continues, it will be important to continue these procedures to assess variations in the proportion of coinfected cases over time.


Assuntos
Coinfecção/epidemiologia , Coinfecção/virologia , Herpes Zoster/epidemiologia , Herpesvirus Humano 3/genética , Monkeypox virus/genética , Mpox/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , República Democrática do Congo/epidemiologia , Monitoramento Epidemiológico , Feminino , Herpesvirus Humano 3/isolamento & purificação , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Monkeypox virus/isolamento & purificação , Adulto Jovem
14.
J Am Assoc Lab Anim Sci ; 58(4): 485-500, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31142401

RESUMO

Because human patients with monkeypox virus (MPXV) infection report painful symptoms, it is reasonable to assume that animals infected with MPXV experience some degree of pain. Understanding whether and how analgesics affect MPXV disease progression is crucial when planning in vivo challenge experiments. In the current study, we challenged prairie dogs with a low dose (4 ×10³ pfu) of MPXV and treated with meloxicam (NSAID) or buprenorphine (opioid); control animals did not receive analgesia or received analgesia without MPXV challenge. Subsets of animals from each group were serially euthanized during the course of the study. Disease progression and viral kinetics were similar between groups, but MXPVinfected, meloxicam-treated animals showed increasing trends of morbidity and mortality compared with other groups. Differences between no-analgesia MPXV-infected control animals and MPXV-infected animals treated with buprenorphine were minimal. The findings in the current study allow more informed decisions concerning the use of analgesics during experimental MPXV challenge studies, thereby improving animal welfare. In light of these findings, we have modified our pain scale for this animal model to include the use of buprenorphine for pain relief when warranted after MPXV challenge.


Assuntos
Analgesia , Buprenorfina , Meloxicam , Mpox , Manejo da Dor , Dor , Sciuridae , Animais , Feminino , Analgesia/veterinária , Analgésicos Opioides , Anti-Inflamatórios não Esteroides , Buprenorfina/uso terapêutico , Modelos Animais de Doenças , Meloxicam/uso terapêutico , Mpox/complicações , Mpox/veterinária , Monkeypox virus , Dor/etiologia , Dor/prevenção & controle , Dor/veterinária , Manejo da Dor/veterinária
15.
Antiviral Res ; 162: 171-177, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30445121

RESUMO

Healthcare-associated transmission of monkeypox has been observed on multiple occasions in areas where the disease is endemic. Data collected by the US Centers for Disease Control and Prevention (CDC) from an ongoing CDC-supported program of enhanced surveillance in the Tshuapa Province of the Democratic Republic of the Congo, where the annual incidence of human monkeypox is estimated to be 3.5-5/10,000, suggests that there is approximately one healthcare worker infection for every 100 confirmed monkeypox cases. Herein, we describe a study that commenced in February 2017, the intent of which is to evaluate the effectiveness, immunogenicity, and safety of a third-generation smallpox vaccine, IMVAMUNE®, in healthcare personnel at risk of monkeypox virus (MPXV) infection. We describe procedures for documenting exposures to monkeypox virus infection in study participants, and outline lessons learned that may be of relevance for studies of other investigational medical countermeasures in hard to reach, under-resourced populations.


Assuntos
Pessoal de Saúde , Mpox/prevenção & controle , Doenças Profissionais/prevenção & controle , Vacina Antivariólica/administração & dosagem , Animais , Ensaios Clínicos como Assunto , República Democrática do Congo/epidemiologia , Recursos em Saúde , Humanos , Imunogenicidade da Vacina , Mpox/epidemiologia , Monkeypox virus , Doenças Profissionais/epidemiologia , Doenças Profissionais/virologia , Fatores de Risco , População Rural , Vacina Antivariólica/imunologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
16.
PLoS Negl Trop Dis ; 11(9): e0005857, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28892474

RESUMO

BACKGROUND: Human monkeypox (MPX) occurs at appreciable rates in the Democratic Republic of Congo (DRC). Infection with varicella zoster virus (VZV) has a similar presentation to that of MPX, and in areas where MPX is endemic these two illnesses are commonly mistaken. This study evaluated the diagnostic utility of two surveillance case definitions for MPX and specific clinical characteristics associated with laboratory-confirmed MPX cases. METHODOLOGY/PRINCIPAL FINDINGS: Data from a cohort of suspect MPX cases (identified by surveillance over the course of a 42 month period during 2009-2014) from DRC were used; real-time PCR diagnostic test results were used to establish MPX and VZV diagnoses. A total of 333 laboratory-confirmed MPX cases, 383 laboratory-confirmed VZV cases, and 36 cases that were determined to not be either MPX or VZV were included in the analyses. Significant (p<0.05) differences between laboratory-confirmed MPX and VZV cases were noted for several signs/symptoms including key rash characteristics. Both surveillance case definitions had high sensitivity and low specificities for individuals that had suspected MPX virus infections. Using 12 signs/symptoms with high sensitivity and/or specificity values, a receiver operator characteristic analysis showed that models for MPX cases that had the presence of 'fever before rash' plus at least 7 or 8 of the 12 signs/symptoms demonstrated a more balanced performance between sensitivity and specificity. CONCLUSIONS: Laboratory-confirmed MPX and VZV cases presented with many of the same signs and symptoms, and the analysis here emphasized the utility of including 12 specific signs/symptoms when investigating MPX cases. In order to document and detect endemic human MPX cases, a surveillance case definition with more specificity is needed for accurate case detection. In the absence of a more specific case definition, continued emphasis on confirmatory laboratory-based diagnostics is warranted.


Assuntos
Técnicas de Apoio para a Decisão , Monitoramento Epidemiológico , Mpox/diagnóstico , Mpox/epidemiologia , República Democrática do Congo/epidemiologia , Humanos , Mpox/patologia , Sensibilidade e Especificidade
17.
PLoS One ; 12(2): e0168664, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28192435

RESUMO

Monkeypox virus (MPXV), a close relative of Variola virus, is a zoonotic virus with an unknown reservoir. Interaction with infected wildlife, bites from peri-domestic animals, and bushmeat hunting are hypothesized routes of infection from wildlife to humans. Using a Risk Questionnaire, performed in monkeypox-affected areas of rural Democratic Republic of the Congo, we describe the lifestyles and demographics associated with presumptive risk factors for MPXV infection. We generated two indices to assess risk: Household Materials Index (HMI), a proxy for socioeconomic status of households and Risk Activity Index (RAI), which describes presumptive risk for animal-to-human transmission of MPXV. Based on participant self-reported activity patterns, we found that people in this population are more likely to visit the forest than a market to fulfill material needs, and that the reported occupation is limited in describing behavior of individuals may participate. Being bitten by rodents in the home was commonly reported, and this was significantly associated with a low HMI. The highest scoring RAI sub-groups were 'hunters' and males aged ≥ 18 years; however, several activities involving MPXV-implicated animals were distributed across all sub-groups. The current analysis may be useful in identifying at-risk groups and help to direct education, outreach and prevention efforts more efficiently.


Assuntos
Mpox/transmissão , Saúde da População Rural/estatística & dados numéricos , População Rural/estatística & dados numéricos , Adolescente , Adulto , Animais , Animais Selvagens/virologia , República Democrática do Congo/epidemiologia , Características da Família , Feminino , Interações Hospedeiro-Patógeno , Humanos , Estilo de Vida , Masculino , Mpox/epidemiologia , Mpox/virologia , Monkeypox virus/fisiologia , Ocupações , Medição de Risco , Fatores de Risco , Roedores/virologia , Fatores Socioeconômicos , Inquéritos e Questionários , Adulto Jovem
19.
J Am Coll Radiol ; 12(5): 458-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25632797

RESUMO

PURPOSE: To understand perceptions of primary care physicians (PCPs) about the value of advanced medical imaging. METHODS: A national quantitative survey of 500 PCPs was conducted using an online self-administered questionnaire. Questions focused on advanced medical imaging (CT, MRI, and PET) and its perceived impact on the delivery of patient care. Responses were stratified by physician demographics. RESULTS: Large majorities of the PCPs indicated that advanced imaging increases their diagnostic confidence (441; 88%); provides data not otherwise available (451; 90%); permits better clinical decision making (440; 88%); increases confidence in treatment choices (438; 88%), and shortens time to definitive diagnosis (430; 86%]). Most (424; 85%) believe that patient care would be negatively affected without access to advanced imaging. PCPs whose clinical careers predated the proliferation of advanced imaging modalities (>20 years of practice) assigned higher value to advanced imaging on several dimensions compared with younger physicians whose training overlapped widespread technology availability. CONCLUSIONS: By a variety of metrics, large majorities of PCPs believe that advanced medical imaging provides considerable value to patient care. Those whose careers predated the widespread availability of advanced imaging tended to associate it with even higher value.


Assuntos
Atitude do Pessoal de Saúde , Diagnóstico por Imagem/estatística & dados numéricos , Médicos de Atenção Primária/estatística & dados numéricos , Padrões de Prática Médica/estatística & dados numéricos , Atenção Primária à Saúde/estatística & dados numéricos , Inquéritos e Questionários , Estados Unidos , Revisão da Utilização de Recursos de Saúde
20.
PLoS One ; 9(7): e103419, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25072249

RESUMO

BACKGROUND: Molluscum contagiosum virus (MCV) causes an innocuous yet persistent skin infection in immunocompetent individuals and is spread by contact with lesions. Studies point to atopic dermatitis (AD) as a risk factor for MCV infection; however, there are no longitudinal studies that have evaluated this hypothesis. METHODS: Outpatient visit data from fiscal years 2001-2009 for American Indian and Alaska Native (AI/AN) children were examined to describe the incidence of molluscum contagiosum (MC). We conducted a case-control study of patients <5 years old at an Indian Health Service (IHS) clinic to evaluate dermatological risk factors for infection. RESULTS: The incidence rate for MC in children <5 years old was highest in the West and East regions. MC cases were more likely to have a prior or co-occurring diagnosis of eczema, eczema or dermatitis, impetigo, and scabies (p<0.05) compared to controls; 51.4% of MC cases had a prior or co-occurring diagnosis of eczema or dermatitis. CONCLUSIONS: The present study is the first demonstration of an association between AD and MC using a case-control study design. It is unknown if the concurrent high incidence of eczema and MC is related, and this association deserves further investigation.


Assuntos
Indígenas Norte-Americanos , Molusco Contagioso/epidemiologia , Vírus do Molusco Contagioso , Assistência Ambulatorial/estatística & dados numéricos , Estudos de Casos e Controles , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Masculino , Razão de Chances , Fatores de Risco , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...