Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ther Adv Respir Dis ; 17: 17534666231186726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646293

RESUMO

BACKGROUND: There have been 26 epidemic thunderstorm asthma (ETSA) events worldwide, with Melbourne at the epicentre of ETSA with 7 recorded events, and in 2016 experienced the deadliest ETSA event ever recorded. Health services and emergency departments were overwhelmed with thousands requiring medical care for acute asthma and 10 people died. OBJECTIVES: This multidisciplinary study was conducted across various health and science departments with the aim of improving our collective understanding of the mechanism behind ETSA. DESIGN: This study involved time-resolved analysis of atmospheric sampling of the air for pollen and fungal spores, and intact and ruptured pollen compared with different weather parameters, pollution levels and clinical asthma presentations. METHODS: Time-resolved pollen and fungal spore data collected by Deakin AirWATCH Burwood, underwent 3-h analysis, to better reflect the 'before', 'during' and 'after' ETSA time points, on the days leading up to and following the Melbourne 2016 event. Linear correlations were conducted with atmospheric pollution data provided by the Environment Protection Authority (EPA) of Victoria, weather data sourced from Bureau of Meteorology (BOM) and clinical asthma presentation data from the Victorian Agency for Health Information (VAHI) of Department of Health. RESULTS: Counts of ruptured grass pollen grains increased 250% when the thunderstorm outflow reached Burwood. Increased PM10, high relative humidity, decreased temperature and low ozone concentrations observed in the storm outflow were correlated with increased levels of ruptured grass pollen. In particular, high ozone levels observed 6 h prior to this ETSA event may be a critical early indicator of impending ETSA event, since high ozone levels have been linked to increasing pollen allergen content and reducing pollen integrity, which may in turn contribute to enhanced pollen rupture. CONCLUSION: The findings presented in this article highlight the importance of including ruptured pollen and time-resolved analysis to forecast ETSA events and thus save lives.


Assuntos
Asma , Ozônio , Humanos , Alérgenos , Pólen , Asma/epidemiologia , Asma/etiologia , Tempo (Meteorologia) , Ozônio/efeitos adversos
2.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457129

RESUMO

Despite making up a significant proportion of airborne allergens, the relationship between fungal spores and asthma is not fully explored. Only 80 taxa of fungi have so far been observed to exacerbate respiratory presentations, with Cladosporium spp., Aspergillus spp., Penicillium spp., and Alternaria spp. found to comprise the predominant allergenic airborne spores. Fungal spores have been found in indoor environments, such as hospitals and housing due to poor ventilation. Meanwhile, outdoor fungal spores exhibit greater diversity, and higher abundance and have been associated with hospitalizations from acute asthma presentations. In addition, fungal spores may be the underlying, and perhaps the "missing link", factor influencing the heightened rate of asthma presentations during epidemic thunderstorm asthma events. To improve our knowledge gap on fungal spores, airborne allergen monitoring must be improved to include not only dominant allergenic fungi but also provide real-time data to accurately and quickly warn the general public. Such data will help prevent future asthma exacerbations and thus save lives. In this review, we examine the health risks of prominent allergenic fungal taxa, the factors influencing spore dispersal and distribution, and why improvements should be made to current sampling methods for public health and wellbeing.


Assuntos
Asma , Alérgenos , Asma/etiologia , Asma/microbiologia , Fungos , Hospitalização , Humanos , Prevalência , Esporos Fúngicos
3.
J Allergy Clin Immunol Pract ; 9(4): 1510-1515, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33172604

RESUMO

Epidemic thunderstorm asthma (ETSA) is a global health problem that can strike without sufficient warning and can have catastrophic consequences. Because of climate change, future events are likely to become more common, more disastrous, and more unpredictable. To prevent loss of life and avoid surge events on health care infrastructure, identifying at-risk individuals and their potential biomarkers is the most prophylactic approach that can be taken to mitigate the deadly consequences of ETSA. In this review, we provide an update on the clinical mechanism, global prevalence, and characteristics of those patients moderately or severely at risk of ETSA. Identifying these patient characteristics will aid clinical professionals to provide suitable and personalized treatment plans and, in turn, avoid future loss of life.


Assuntos
Asma , Epidemias , Alérgenos , Asma/epidemiologia , Humanos , Pólen , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...