Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thromb Res ; 226: 100-106, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37141794

RESUMO

Cancer survivors are at an increased risk of thromboembolism compared to the general pediatric population. Anticoagulant therapy decreases the risk of thromboembolism in cancer patients. We hypothesized that pediatric cancer survivors are in a chronically hypercoagulable state compared to healthy controls. Children who survived for more than five years from cancer diagnosis at the UT Health Science Center at San Antonio Cancer Survivorship Clinic were compared to healthy controls. The exclusion criteria were recent NSAID use or a history of coagulopathy. Coagulation analysis included platelet count, thrombin-antithrombin complexes (TAT), plasminogen activator inhibitor (PAI), routine coagulation assays, and thrombin generation with and without thrombomodulin. We enrolled 47 pediatric cancer survivors and 37 healthy controls. Platelet count was significantly lower in cancer survivors at a mean of 254 × 109/L (95%CI: 234-273 × 109/L) compared at 307 × 109/L (283-331 × 109/L) in healthy controls (p < 0.001), although not outside the normal range. Routine coagulation assays showed no differences, except for a significantly lower prothrombin time (PT) in cancer survivors (p < 0.004). Cancer survivors has significantly elevated biomarkers of the procoagulant state, such as TAT and PAI, compared to healthy controls (p < 0.001). A multiple logistic regression model controlling for age, BMI, gender, and race/ethnicity documented that a low platelet count, short prothrombin clot time, and higher procoagulant biomarkers (TAT and PAI) were significantly associated with past cancer therapy. Survivors of childhood cancer have a persistent procoagulant imbalance for more than five years after diagnosis. Further studies are needed to establish whether procoagulant imbalance increases the risk of thromboembolism in childhood cancer survivors.


Assuntos
Transtornos da Coagulação Sanguínea , Sobreviventes de Câncer , Neoplasias , Tromboembolia , Criança , Humanos , Trombina , Estudos de Coortes , Neoplasias/complicações , Coagulação Sanguínea , Biomarcadores
2.
Chem Res Toxicol ; 34(2): 584-600, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33496184

RESUMO

Electrophilically reactive drug metabolites are implicated in many adverse drug reactions. In this mechanism-termed bioactivation-metabolic enzymes convert drugs into reactive metabolites that often conjugate to nucleophilic sites within biological macromolecules like proteins. Toxic metabolite-product adducts induce severe immune responses that can cause sometimes fatal disorders, most commonly in the form of liver injury, blood dyscrasia, or the dermatologic conditions toxic epidermal necrolysis and Stevens-Johnson syndrome. This study models four of the most common metabolic transformations that result in bioactivation: quinone formation, epoxidation, thiophene sulfur-oxidation, and nitroaromatic reduction, by synthesizing models of metabolism and reactivity. First, the metabolism models predict the formation probabilities of all possible metabolites among the pathways studied. Second, the exact structures of these metabolites are enumerated. Third, using these structures, the reactivity model predicts the reactivity of each metabolite. Finally, a feedfoward neural network converts the metabolism and reactivity predictions to a bioactivation prediction for each possible metabolite. These bioactivation predictions represent the joint probability that a metabolite forms and that this metabolite subsequently conjugates to protein or glutathione. Among molecules bioactivated by these pathways, we predicted the correct pathway with an AUC accuracy of 89.98%. Furthermore, the model predicts whether molecules will be bioactivated, distinguishing bioactivated and nonbioactivated molecules with 81.06% AUC. We applied this algorithm to withdrawn drugs. The known bioactivation pathways of alclofenac and benzbromarone were identified by the algorithm, and high probability bioactivation pathways not yet confirmed were identified for safrazine, zimelidine, and astemizole. This bioactivation model-the first of its kind that jointly considers both metabolism and reactivity-enables drug candidates to be quickly evaluated for a toxicity risk that often evades detection during preclinical trials. The XenoSite bioactivation model is available at http://swami.wustl.edu/xenosite/p/bioactivation.


Assuntos
Compostos de Epóxi/metabolismo , Modelos Biológicos , Nitrobenzenos/metabolismo , Quinonas/metabolismo , Enxofre/metabolismo , Tiofenos/metabolismo , Compostos de Epóxi/química , Humanos , Estrutura Molecular , Nitrobenzenos/química , Oxirredução , Quinonas/química , Enxofre/química , Tiofenos/química
3.
J Chem Inf Model ; 60(10): 4702-4716, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32881497

RESUMO

Adverse drug metabolism often severely impacts patient morbidity and mortality. Unfortunately, drug metabolism experimental assays are costly, inefficient, and slow. Instead, computational modeling could rapidly flag potentially toxic molecules across thousands of candidates in the early stages of drug development. Most metabolism models focus on predicting sites of metabolism (SOMs): the specific substrate atoms targeted by metabolic enzymes. However, SOMs are merely a proxy for metabolic structures: knowledge of an SOM does not explicitly provide the actual metabolite structure. Without an explicit metabolite structure, computational systems cannot evaluate the new molecule's properties. For example, the metabolite's reactivity cannot be automatically predicted, a crucial limitation because reactive drug metabolites are a key driver of adverse drug reactions (ADRs). Additionally, further metabolic events cannot be forecast, even though the metabolic path of the majority of substrates includes two or more sequential steps. To overcome the myopia of the SOM paradigm, this study constructs a well-defined system-termed the metabolic forest-for generating exact metabolite structures. We validate the metabolic forest with the substrate and product structures from a large, chemically diverse, literature-derived dataset of 20 736 records. The metabolic forest finds a pathway linking each substrate and product for 79.42% of these records. By performing a breadth-first search of depth two or three, we improve performance to 88.43 and 88.77%, respectively. The metabolic forest includes a specialized algorithm for producing accurate quinone structures, the most common type of reactive metabolite. To our knowledge, this quinone structure algorithm is the first of its kind, as the diverse mechanisms of quinone formation are difficult to systematically reproduce. We validate the metabolic forest on a previously published dataset of 576 quinone reactions, predicting their structures with a depth three performance of 91.84%. The metabolic forest accurately enumerates metabolite structures, enabling promising new directions such as joint metabolism and reactivity modeling.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Preparações Farmacêuticas , Florestas , Humanos
4.
J Chem Inf Model ; 60(3): 1146-1164, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32040319

RESUMO

Metabolism of drugs affects their absorption, distribution, efficacy, excretion, and toxicity profiles. Metabolism is routinely assessed experimentally using recombinant enzymes, human liver microsome, and animal models. Unfortunately, these experiments are expensive, time-consuming, and often extrapolate poorly to humans because they fail to capture the full breadth of metabolic reactions observed in vivo. As a result, metabolic pathways leading to the formation of toxic metabolites are often missed during drug development, giving rise to costly failures. To address some of these limitations, computational metabolism models can rapidly and cost-effectively predict sites of metabolism-the atoms or bonds which undergo enzymatic modifications-on thousands of drug candidates, thereby improving the likelihood of discovering metabolic transformations forming toxic metabolites. However, current computational metabolism models are often unable to predict the specific metabolites formed by metabolism at certain sites. Identification of reaction type is a key step toward metabolite prediction. Phase I enzymes, which are responsible for the metabolism of more than 90% of FDA approved drugs, catalyze highly diverse types of reactions and produce metabolites with substantial structural variability. Without knowledge of potential metabolite structures, medicinal chemists cannot differentiate harmful metabolic transformations from beneficial ones. To address this shortcoming, we propose a system for simultaneously labeling sites of metabolism and reaction types, by classifying them into five key reaction classes: stable and unstable oxidations, dehydrogenation, hydrolysis, and reduction. These classes unambiguously identify 21 types of phase I reactions, which cover 92.3% of known reactions in our database. We used this labeling system to train a neural network model of phase I metabolism on a literature-derived data set encompassing 20 736 human phase I metabolic reactions. Our model, Rainbow XenoSite, was able to identify reaction-type specific sites of metabolism with a cross-validated accuracy of 97.1% area under the receiver operator curve. Rainbow XenoSite with five-color and combined output is available for use free and online through our secure server at http://swami.wustl.edu/xenosite/p/phase1_rainbow.


Assuntos
Aprendizado Profundo , Animais , Cor , Humanos , Redes e Vias Metabólicas , Microssomos Hepáticos , Redes Neurais de Computação
5.
J Chem Inf Model ; 58(8): 1483-1500, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29990427

RESUMO

Scientists rely on high-throughput screening tools to identify promising small-molecule compounds for the development of biochemical probes and drugs. This study focuses on the identification of promiscuous bioactive compounds, which are compounds that appear active in many high-throughput screening experiments against diverse targets but are often false-positives which may not be easily developed into successful probes. These compounds can exhibit bioactivity due to nonspecific, intractable mechanisms of action and/or by interference with specific assay technology readouts. Such "frequent hitters" are now commonly identified using substructure filters, including pan assay interference compounds (PAINS). Herein, we show that mechanistic modeling of small-molecule reactivity using deep learning can improve upon PAINS filters when modeling promiscuous bioactivity in PubChem assays. Without training on high-throughput screening data, a deep learning model of small-molecule reactivity achieves a sensitivity and specificity of 18.5% and 95.5%, respectively, in identifying promiscuous bioactive compounds. This performance is similar to PAINS filters, which achieve a sensitivity of 20.3% at the same specificity. Importantly, such reactivity modeling is complementary to PAINS filters. When PAINS filters and reactivity models are combined, the resulting model outperforms either method alone, achieving a sensitivity of 24% at the same specificity. However, as a probabilistic model, the sensitivity and specificity of the deep learning model can be tuned by adjusting the threshold. Moreover, for a subset of PAINS filters, this reactivity model can help discriminate between promiscuous and nonpromiscuous bioactive compounds even among compounds matching those filters. Critically, the reactivity model provides mechanistic hypotheses for assay interference by predicting the precise atoms involved in compound reactivity. Overall, our analysis suggests that deep learning approaches to modeling promiscuous compound bioactivity may provide a complementary approach to current methods for identifying promiscuous compounds.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Simulação por Computador , Bases de Dados Factuais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Humanos , Modelos Biológicos , Redes Neurais de Computação
6.
Chem Res Toxicol ; 31(2): 68-80, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29355304

RESUMO

Cytochromes P450 (CYPs) oxidize alkylated amines commonly found in drugs and other biologically active molecules, cleaving them into an amine and an aldehyde. Metabolic studies usually neglect to report or investigate aldehydes, even though they can be toxic. It is assumed that they are efficiently detoxified into carboxylic acids and alcohols. Nevertheless, some aldehydes are reactive and escape detoxification pathways to cause adverse events by forming DNA and protein adducts. Herein, we modeled N-dealkylations that produce both amine and aldehyde metabolites and then predicted the reactivity of the aldehyde. This model used a deep learning approach previously developed by our group to predict other types of drug metabolism. In this study, we trained the model to predict N-dealkylation by human liver microsomes (HLM), finding that including isozyme-specific metabolism data alongside HLM data significantly improved results. The final HLM model accurately predicted the site of N-dealkylation within metabolized substrates (97% top-two and 94% area under the ROC curve). Next, we combined the metabolism, metabolite structure prediction, and previously published reactivity models into a bioactivation model. This combined model predicted the structure of the most likely reactive metabolite of a small validation set of drug-like molecules known to be bioactivated by N-dealkylation. Applying this model to approved and withdrawn medicines, we found that aldehyde metabolites produced from N-dealkylation may explain the hepatotoxicity of several drugs: indinavir, piperacillin, verapamil, and ziprasidone. Our results suggest that N-dealkylation may be an under-appreciated bioactivation pathway, especially in clinical contexts where aldehyde detoxification pathways are inhibited. Moreover, this is the first report of a bioactivation model constructed by combining a metabolism and reactivity model. These results raise hope that more comprehensive models of bioactivation are possible. The model developed in this study is available at http://swami.wustl.edu/xenosite/ .


Assuntos
Indinavir/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Piperacilina/metabolismo , Piperazinas/metabolismo , Tiazóis/metabolismo , Verapamil/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Aminas/química , Aminas/metabolismo , Remoção de Radical Alquila , Humanos , Indinavir/farmacologia , Fígado/efeitos dos fármacos , Microssomos Hepáticos/química , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Piperacilina/farmacologia , Piperazinas/farmacologia , Tiazóis/farmacologia , Verapamil/farmacologia
7.
Chem Res Toxicol ; 30(4): 1046-1059, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28256829

RESUMO

Structural alerts are commonly used in drug discovery to identify molecules likely to form reactive metabolites and thereby become toxic. Unfortunately, as useful as structural alerts are, they do not effectively model if, when, and why metabolism renders safe molecules toxic. Toxicity due to a specific structural alert is highly conditional, depending on the metabolism of the alert, the reactivity of its metabolites, dosage, and competing detoxification pathways. A systems approach, which explicitly models these pathways, could more effectively assess the toxicity risk of drug candidates. In this study, we demonstrated that mathematical models of P450 metabolism can predict the context-specific probability that a structural alert will be bioactivated in a given molecule. This study focuses on the furan, phenol, nitroaromatic, and thiophene alerts. Each of these structural alerts can produce reactive metabolites through certain metabolic pathways but not always. We tested whether our metabolism modeling approach, XenoSite, can predict when a given molecule's alerts will be bioactivated. Specifically, we used models of epoxidation, quinone formation, reduction, and sulfur-oxidation to predict the bioactivation of furan-, phenol-, nitroaromatic-, and thiophene-containing drugs. Our models separated bioactivated and not-bioactivated furan-, phenol-, nitroaromatic-, and thiophene-containing drugs with AUC performances of 100%, 73%, 93%, and 88%, respectively. Metabolism models accurately predict whether alerts are bioactivated and thus serve as a practical approach to improve the interpretability and usefulness of structural alerts. We expect that this same computational approach can be extended to most other structural alerts and later integrated into toxicity risk models. This advance is one necessary step toward our long-term goal of building comprehensive metabolic models of bioactivation and detoxification to guide assessment and design of new therapeutic molecules.


Assuntos
Furanos/química , Modelos Químicos , Fenóis/química , Tiofenos/química , Animais , Área Sob a Curva , Benzoquinonas/química , Benzoquinonas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Furanos/metabolismo , Furanos/toxicidade , Fígado/efeitos dos fármacos , Oxirredução , Fenóis/metabolismo , Fenóis/toxicidade , Curva ROC , Tiofenos/metabolismo , Tiofenos/toxicidade
8.
Chem Res Toxicol ; 30(2): 642-656, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28099803

RESUMO

Many adverse drug reactions are thought to be caused by electrophilically reactive drug metabolites that conjugate to nucleophilic sites within DNA and proteins, causing cancer or toxic immune responses. Quinone species, including quinone-imines, quinone-methides, and imine-methides, are electrophilic Michael acceptors that are often highly reactive and comprise over 40% of all known reactive metabolites. Quinone metabolites are created by cytochromes P450 and peroxidases. For example, cytochromes P450 oxidize acetaminophen to N-acetyl-p-benzoquinone imine, which is electrophilically reactive and covalently binds to nucleophilic sites within proteins. This reactive quinone metabolite elicits a toxic immune response when acetaminophen exceeds a safe dose. Using a deep learning approach, this study reports the first published method for predicting quinone formation: the formation of a quinone species by metabolic oxidation. We model both one- and two-step quinone formation, enabling accurate quinone formation predictions in nonobvious cases. We predict atom pairs that form quinones with an AUC accuracy of 97.6%, and we identify molecules that form quinones with 88.2% AUC. By modeling the formation of quinones, one of the most common types of reactive metabolites, our method provides a rapid screening tool for a key drug toxicity risk. The XenoSite quinone formation model is available at http://swami.wustl.edu/xenosite/p/quinone .


Assuntos
Quinonas/metabolismo , Área Sob a Curva , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Oxirredução , Teoria Quântica , Quinonas/química
9.
ACS Cent Sci ; 2(8): 529-37, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27610414

RESUMO

Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network-the XenoSite reactivity model-using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule-level, the model's performances significantly outperformed reactivity indices derived from quantum simulations that are reported in the literature. Moreover, we developed and applied a selectivity score to assess preferential reactions with the macromolecules as opposed to the common screening traps. For the entire data set of 2803 molecules, this approach yielded totals of 257 (9.2%) and 227 (8.1%) molecules predicted to be reactive only with DNA and protein, respectively, and hence those that would be missed by standard reactivity screening experiments. Site of reactivity data is an underutilized resource that can be used to not only predict if molecules are reactive, but also show where they might be modified to reduce toxicity while retaining efficacy. The XenoSite reactivity model is available at http://swami.wustl.edu/xenosite/p/reactivity.

10.
Bioinformatics ; 32(20): 3183-3189, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27324196

RESUMO

MOTIVATION: Uridine diphosphate glucunosyltransferases (UGTs) metabolize 15% of FDA approved drugs. Lead optimization efforts benefit from knowing how candidate drugs are metabolized by UGTs. This paper describes a computational method for predicting sites of UGT-mediated metabolism on drug-like molecules. RESULTS: XenoSite correctly predicts test molecule's sites of glucoronidation in the Top-1 or Top-2 predictions at a rate of 86 and 97%, respectively. In addition to predicting common sites of UGT conjugation, like hydroxyl groups, it can also accurately predict the glucoronidation of atypical sites, such as carbons. We also describe a simple heuristic model for predicting UGT-mediated sites of metabolism that performs nearly as well (with, respectively, 80 and 91% Top-1 and Top-2 accuracy), and can identify the most challenging molecules to predict on which to assess more complex models. Compared with prior studies, this model is more generally applicable, more accurate and simpler (not requiring expensive quantum modeling). AVAILABILITY AND IMPLEMENTATION: The UGT metabolism predictor developed in this study is available at http://swami.wustl.edu/xenosite/p/ugt CONTACT: : swamidass@wustl.eduSupplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Glucuronosiltransferase/metabolismo , Preparações Farmacêuticas/metabolismo , Interações Medicamentosas , Humanos
11.
Chem Res Toxicol ; 28(4): 797-809, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25742281

RESUMO

Drug toxicity is often caused by electrophilic reactive metabolites that covalently bind to proteins. Consequently, the quantitative strength of a molecule's reactivity with glutathione (GSH) is a frequently used indicator of its toxicity. Through cysteine, GSH (and proteins) scavenges reactive molecules to form conjugates in the body. GSH conjugates to specific atoms in reactive molecules: their sites of reactivity. The value of knowing a molecule's sites of reactivity is unexplored in the literature. This study tests the value of site of reactivity data that identifies the atoms within 1213 reactive molecules that conjugate to GSH and builds models to predict molecular reactivity with glutathione. An algorithm originally written to model sites of cytochrome P450 metabolism (called XenoSite) finds clear patterns in molecular structure that identify sites of reactivity within reactive molecules with 90.8% accuracy and separate reactive and unreactive molecules with 80.6% accuracy. Furthermore, the model output strongly correlates with quantitative GSH reactivity data in chemically diverse, external data sets. Site of reactivity data is nearly unstudied in the literature prior to our efforts, yet it contains a strong signal for reactivity that can be utilized to more accurately predict molecule reactivity and, eventually, toxicity.


Assuntos
Glutationa/química , Modelos Químicos , Relação Quantitativa Estrutura-Atividade
12.
Bioinformatics ; 31(12): 1966-73, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25697821

RESUMO

MOTIVATION: Cytochrome P450s are a family of enzymes responsible for the metabolism of approximately 90% of FDA-approved drugs. Medicinal chemists often want to know which atoms of a molecule-its metabolized sites-are oxidized by Cytochrome P450s in order to modify their metabolism. Consequently, there are several methods that use literature-derived, atom-resolution data to train models that can predict a molecule's sites of metabolism. There is, however, much more data available at a lower resolution, where the exact site of metabolism is not known, but the region of the molecule that is oxidized is known. Until now, no site-of-metabolism models made use of region-resolution data. RESULTS: Here, we describe XenoSite-Region, the first reported method for training site-of-metabolism models with region-resolution data. Our approach uses the Expectation Maximization algorithm to train a site-of-metabolism model. Region-resolution metabolism data was simulated from a large site-of-metabolism dataset, containing 2000 molecules with 3400 metabolized and 30 000 un-metabolized sites and covering nine Cytochrome P450 isozymes. When training on the same molecules (but with only region-level information), we find that this approach yields models almost as accurate as models trained with atom-resolution data. Moreover, we find that atom-resolution trained models are more accurate when also trained with region-resolution data from additional molecules. Our approach, therefore, opens up a way to extend the applicable domain of site-of-metabolism models into larger regions of chemical space. This meets a critical need in drug development by tapping into underutilized data commonly available in most large drug companies. AVAILABILITY AND IMPLEMENTATION: The algorithm, data and a web server are available at http://swami.wustl.edu/xregion.


Assuntos
Algoritmos , Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/metabolismo , Xenobióticos/metabolismo , Sistema Enzimático do Citocromo P-450/química , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
13.
Immunity ; 42(1): 186-98, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25607463

RESUMO

Most B-cell lymphomas arise in the germinal center (GC), where humoral immune responses evolve from potentially oncogenic cycles of mutation, proliferation, and clonal selection. Although lymphoma gene expression diverges significantly from GC B cells, underlying mechanisms that alter the activities of corresponding regulatory elements (REs) remain elusive. Here we define the complete pathogenic circuitry of human follicular lymphoma (FL), which activates or decommissions REs from normal GC B cells and commandeers enhancers from other lineages. Moreover, independent sets of transcription factors, whose expression was deregulated in FL, targeted commandeered versus decommissioned REs. Our approach revealed two distinct subtypes of low-grade FL, whose pathogenic circuitries resembled GC B or activated B cells. FL-altered enhancers also were enriched for sequence variants, including somatic mutations, which disrupt transcription-factor binding and expression of circuit-linked genes. Thus, the pathogenic regulatory circuitry of FL reveals distinct genetic and epigenetic etiologies for GC B-cell transformation.


Assuntos
Linfócitos B/fisiologia , Redes Reguladoras de Genes , Centro Germinativo/patologia , Linfoma de Células B/genética , Elementos Reguladores de Transcrição/imunologia , Adulto , Idoso , Transformação Celular Neoplásica , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Ativação Linfocitária/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
ACS Cent Sci ; 1(4): 168-80, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27162970

RESUMO

Drug toxicity is frequently caused by electrophilic reactive metabolites that covalently bind to proteins. Epoxides comprise a large class of three-membered cyclic ethers. These molecules are electrophilic and typically highly reactive due to ring tension and polarized carbon-oxygen bonds. Epoxides are metabolites often formed by cytochromes P450 acting on aromatic or double bonds. The specific location on a molecule that undergoes epoxidation is its site of epoxidation (SOE). Identifying a molecule's SOE can aid in interpreting adverse events related to reactive metabolites and direct modification to prevent epoxidation for safer drugs. This study utilized a database of 702 epoxidation reactions to build a model that accurately predicted sites of epoxidation. The foundation for this model was an algorithm originally designed to model sites of cytochromes P450 metabolism (called XenoSite) that was recently applied to model the intrinsic reactivity of diverse molecules with glutathione. This modeling algorithm systematically and quantitatively summarizes the knowledge from hundreds of epoxidation reactions with a deep convolution network. This network makes predictions at both an atom and molecule level. The final epoxidation model constructed with this approach identified SOEs with 94.9% area under the curve (AUC) performance and separated epoxidized and non-epoxidized molecules with 79.3% AUC. Moreover, within epoxidized molecules, the model separated aromatic or double bond SOEs from all other aromatic or double bonds with AUCs of 92.5% and 95.1%, respectively. Finally, the model separated SOEs from sites of sp(2) hydroxylation with 83.2% AUC. Our model is the first of its kind and may be useful for the development of safer drugs. The epoxidation model is available at http://swami.wustl.edu/xenosite.

15.
Bioinformatics ; 31(7): 1136-7, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25411327

RESUMO

UNLABELLED: Cytochrome P450 enzymes (P450s) are metabolic enzymes that process the majority of FDA-approved, small-molecule drugs. Understanding how these enzymes modify molecule structure is key to the development of safe, effective drugs. XenoSite server is an online implementation of the XenoSite, a recently published computational model for P450 metabolism. XenoSite predicts which atomic sites of a molecule--sites of metabolism (SOMs)--are modified by P450s. XenoSite server accepts input in common chemical file formats including SDF and SMILES and provides tools for visualizing the likelihood that each atomic site is a site of metabolism for a variety of important P450s, as well as a flat file download of SOM predictions. AVAILABILITY AND IMPLEMENTATION: XenoSite server is available at http://swami.wustl.edu/xenosite.


Assuntos
Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Dibenzotiepinas/metabolismo , Internet , Redes e Vias Metabólicas , Xenobióticos/metabolismo , Antipsicóticos/metabolismo , Sistema Enzimático do Citocromo P-450/química , Humanos , Simulação de Acoplamento Molecular , Redes Neurais de Computação , Probabilidade , Bibliotecas de Moléculas Pequenas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...