Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Stem Cell ; 29(11): 1594-1610.e8, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332572

RESUMO

The molecular diversity of glia in the human hippocampus and their temporal dynamics over the lifespan remain largely unknown. Here, we performed single-nucleus RNA sequencing to generate a transcriptome atlas of the human hippocampus across the postnatal lifespan. Detailed analyses of astrocytes, oligodendrocyte lineages, and microglia identified subpopulations with distinct molecular signatures and revealed their association with specific physiological functions, age-dependent changes in abundance, and disease relevance. We further characterized spatiotemporal heterogeneity of GFAP-enriched astrocyte subpopulations in the hippocampal formation using immunohistology. Leveraging glial subpopulation classifications as a reference map, we revealed the diversity of glia differentiated from human pluripotent stem cells and identified dysregulated genes and pathological processes in specific glial subpopulations in Alzheimer's disease (AD). Together, our study significantly extends our understanding of human glial diversity, population dynamics across the postnatal lifespan, and dysregulation in AD and provides a reference atlas for stem-cell-based glial differentiation.


Assuntos
Doença de Alzheimer , Transcriptoma , Humanos , Transcriptoma/genética , Longevidade/genética , Neuroglia/patologia , Hipocampo , Astrócitos/patologia , Doença de Alzheimer/patologia
3.
Cell Stem Cell ; 26(5): 766-781.e9, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142682

RESUMO

Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/ß-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neocórtex , Humanos , Neurogênese , Neurônios , Organoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...