Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522521

RESUMO

The role of polyunsaturated fatty acid (PUFA) biosynthesis in acute myeloid leukemia (AML) remains largely undefined. A comparative expression analysis of 35 genes encoding fatty acid biosynthesis enzymes showed that fatty acid desaturase 1 (FADS1) was highly expressed across multiple AML subtypes relative to healthy controls and that elevated FADS1 expression correlates with worse overall AML patient survival. Functionally, shRNA-mediated inhibition of FADS1 reduced AML cell growth in vitro and significantly delayed leukemia onset in an AML mouse model. AML cell lines depleted of FADS1 arrested in the G1/S-phase of the cell cycle, acquired characteristics of myeloid maturation and subsequently died. To understand the molecular consequences of FADS1 inhibition, a combination of mass spectrometry-based analysis of complex lipids and gene expression analysis (RNA-seq) was performed. FADS1 inhibition caused AML cells to exhibit significant lipidomic remodeling, including depletion of PUFAs from the phospholipids, phosphatidylserine, and phosphatidylethanolamine. These lipidomic alterations were accompanied by an increase induction of inflammatory and stimulator of interferon genes (STING)-mediated type-1 interferon signaling. Remarkably, genetic deletion of STING largely prevented the AML cell maturation and death phenotypes mediated by FADS1 inhibition. Highlighting the therapeutic implications of these findings, pharmacological blockade of PUFA biosynthesis reduced patient-derived AML cell numbers ex vivo but not that of healthy donor cells. Similarly, STING agonism attenuated patient-derived-AML survival; however, STING activation also reduced healthy granulocyte numbers. Collectively, these data unveil a previously unrecognized importance of PUFA biosynthesis in leukemogenesis and that imbalances in PUFA metabolism can drive STING-mediated AML maturation and death.


Assuntos
Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases , Ácidos Graxos Insaturados , Leucemia Mieloide Aguda , Proteínas de Membrana , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Animais , Humanos , Camundongos , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Morte Celular , Transdução de Sinais
2.
Mol Cell ; 81(13): 2752-2764.e6, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34081901

RESUMO

Metabolic reprogramming is a common feature of many human cancers, including acute myeloid leukemia (AML). However, the upstream regulators that promote AML metabolic reprogramming and the benefits conferred to leukemia cells by these metabolic changes remain largely unknown. We report that the transcription factor ATF3 coordinates serine and nucleotide metabolism to maintain cell cycling, survival, and the differentiation blockade in AML. Analysis of mouse and human AML models demonstrate that ATF3 directly activates the transcription of genes encoding key enzymatic regulators of serine synthesis, one-carbon metabolism, and de novo purine and pyrimidine synthesis. Total steady-state polar metabolite and heavy isotope tracing analyses show that ATF3 inhibition reduces de novo serine synthesis, impedes the incorporation of serine-derived carbons into newly synthesized purines, and disrupts pyrimidine metabolism. Importantly, exogenous nucleotide supplementation mitigates the anti-leukemia effects of ATF3 inhibition. Together, these findings reveal the dependence of AML on ATF3-regulated serine and nucleotide metabolism.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Ciclo Celular , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Nucleotídeos/metabolismo , Serina/metabolismo , Fator 3 Ativador da Transcrição/genética , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Nucleotídeos/genética , Serina/genética
3.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34117057

RESUMO

Genome-embedded ribonucleotides arrest replicative DNA polymerases (Pols) and cause DNA breaks. Whether mammalian DNA repair Pols efficiently use template ribonucleotides and promote RNA-templated DNA repair synthesis remains unknown. We find that human Polθ reverse transcribes RNA, similar to retroviral reverse transcriptases (RTs). Polθ exhibits a significantly higher velocity and fidelity of deoxyribonucleotide incorporation on RNA versus DNA. The 3.2-Šcrystal structure of Polθ on a DNA/RNA primer-template with bound deoxyribonucleotide reveals that the enzyme undergoes a major structural transformation within the thumb subdomain to accommodate A-form DNA/RNA and forms multiple hydrogen bonds with template ribose 2'-hydroxyl groups like retroviral RTs. Last, we find that Polθ promotes RNA-templated DNA repair in mammalian cells. These findings suggest that Polθ was selected to accommodate template ribonucleotides during DNA repair.


Assuntos
DNA Polimerase Dirigida por DNA , RNA , Animais , DNA/química , Reparo do DNA , DNA Polimerase Dirigida por DNA/química , Desoxirribonucleotídeos , Humanos , Mamíferos/genética , Ribonucleotídeos
4.
Nucleic Acids Res ; 49(11): 6315-6330, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34107024

RESUMO

DNA methylation, chromatin-binding proteins, and DNA looping are common components regulating genomic imprinting which leads to parent-specific monoallelic gene expression. Loss of methylation (LOM) at the human imprinting center 2 (IC2) on chromosome 11p15 is the most common cause of the imprinting overgrowth disorder Beckwith-Wiedemann Syndrome (BWS). Here, we report a familial transmission of a 7.6 kB deletion that ablates the core promoter of KCNQ1. This structural alteration leads to IC2 LOM and causes recurrent BWS. We find that occupancy of the chromatin organizer CTCF is disrupted proximal to the deletion, which causes chromatin architecture changes both in cis and in trans. We also profile the chromatin architecture of IC2 in patients with sporadic BWS caused by isolated LOM to identify conserved features of IC2 regulatory disruption. A strong interaction between CTCF sites around KCNQ1 and CDKN1C likely drive their expression on the maternal allele, while a weaker interaction involving the imprinting control region element may impede this connection and mediate gene silencing on the paternal allele. We present an imprinting model in which KCNQ1 transcription is necessary for appropriate CTCF binding and a novel chromatin conformation to drive allele-specific gene expression.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Fator de Ligação a CCCTC/metabolismo , Cromossomos Humanos Par 11 , Canal de Potássio KCNQ1/genética , Fator de Ligação a CCCTC/fisiologia , Centrômero , Deleção Cromossômica , Feminino , Impressão Genômica , Humanos , Recém-Nascido , Transcrição Gênica
5.
Biol Sex Differ ; 8(1): 28, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28818098

RESUMO

BACKGROUND: Pre-implantation embryos exhibit sexual dimorphisms in both primates and rodents. To determine whether these differences reflected sex-biased expression patterns, we generated transcriptome profiles for six 40,XX, six 40,XY, and two 39,X mouse embryonic stem (ES) cells by RNA sequencing. RESULTS: We found hundreds of coding and non-coding RNAs that were differentially expressed between male and female cells. Surprisingly, the majority of these were autosomal and included RNA encoding transcription and epigenetic and chromatin remodeling factors. We showed differential Prdm14-responsive enhancer activity in male and female cells, correlating with the sex-specific levels of Prdm14 expression. This is the first time sex-specific enhancer activity in ES cells has been reported. Evaluation of X-linked gene expression patterns between our XX and XY lines revealed four distinct categories: (1) genes showing 2-fold greater expression in the female cells; (2) a set of genes with expression levels well above 2-fold in female cells; (3) genes with equivalent RNA levels in male and female cells; and strikingly, (4) a small number of genes with higher expression in the XY lines. Further evaluation of autosomal gene expression revealed differential expression of imprinted loci, despite appropriate parent-of-origin patterns. The 39,X lines aligned closely with the XY cells and provided insights into potential regulation of genes associated with Turner syndrome in humans. Moreover, inclusion of the 39,X lines permitted three-way comparisons, delineating X and Y chromosome-dependent patterns. CONCLUSIONS: Overall, our results support the role of the sex chromosomes in establishing sex-specific networks early in embryonic development and provide insights into effects of sex chromosome aneuploidies originating at those stages.


Assuntos
Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Expressão Gênica/fisiologia , Caracteres Sexuais , Cromossomos Sexuais , Animais , Linhagem Celular , Proteínas de Ligação a DNA , Feminino , Loci Gênicos , Masculino , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , RNA/metabolismo , Proteínas de Ligação a RNA , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...