Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2510, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130854

RESUMO

Simulating physical dynamics to solve hard combinatorial optimization has proven effective for medium- to large-scale problems. The dynamics of such systems is continuous, with no guarantee of finding optimal solutions of the original discrete problem. We investigate the open question of when simulated physical solvers solve discrete optimizations correctly, with a focus on coherent Ising machines (CIMs). Having established the existence of an exact mapping between CIM dynamics and discrete Ising optimization, we report two fundamentally distinct bifurcation behaviors of the Ising dynamics at the first bifurcation point: either all nodal states simultaneously deviate from zero (synchronized bifurcation) or undergo a cascade of such deviations (retarded bifurcation). For synchronized bifurcation, we prove that when the nodal states are uniformly bounded away from the origin, they contain sufficient information for exactly solving the Ising problem. When the exact mapping conditions are violated, subsequent bifurcations become necessary and often cause slow convergence. Inspired by those findings, we devise a trapping-and-correction (TAC) technique to accelerate dynamics-based Ising solvers, including CIMs and simulated bifurcation. TAC takes advantage of early bifurcated "trapped nodes" which maintain their sign throughout the Ising dynamics to reduce computation time effectively. Using problem instances from open benchmark and random Ising models, we validate the superior convergence and accuracy of TAC.

2.
Sci Rep ; 9(1): 19819, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31852974

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 7(1): 3723, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623348

RESUMO

This paper establishes a Markov chain model as a unified framework for describing the evolution processes in complex networks. The unique feature of the proposed model is its capability in addressing the formation mechanism that can reflect the "trichotomy" observed in degree distributions, based on which closed-form solutions can be derived. Important special cases of the proposed unified framework are those classical models, including Poisson, Exponential, Power-law distributed networks. Both simulation and experimental results demonstrate a good match of the proposed model with real datasets, showing its superiority over the classical models. Implications of the model to various applications including citation analysis, online social networks, and vehicular networks design, are also discussed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...