Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169467, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38141976

RESUMO

Plastic pollution is an increasing environmental concern. Pollutants such as microplastics (< 5 mm) and pharmaceuticals often co-exist in the aquatic environment. The current study aimed to elucidate the interaction of pharmaceuticals with microplastics and ascertain how the process of photo-oxidation of microplastics affected the adsorption of the pharmaceuticals. To this end, a mixture containing ibuprofen, carbamazepine, fluoxetine, venlafaxine and ofloxacin (16 µmol L-1 each) was placed in contact with one of six either virgin or aged microplastic types. The virgin microplastics were acquired commercially and artificially aged in the laboratory. Polypropylene, polyethylene, polyethylene terephthalate, polyamide, polystyrene, and polyvinyl chloride microparticles at two sizes described as small (D50 < 35 µm) and large (D50 95-157 µm) were evaluated. Results demonstrated that the study of virgin particles may underestimate the adsorption of micropollutants onto microplastics. For virgin particles, only small microparticles of polypropylene, polyethylene, polyvinyl chloride, and both sizes of polyamide adsorbed pharmaceuticals. Aging the microplastics increased significantly the adsorption of pharmaceuticals by microplastics. Fluoxetine adsorbed onto all aged microplastics, from 18 % (large polyethylene terephthalate) to 99 % (small polypropylene). The current investigation highlights the potential of microplastics to act as a vector for pharmaceuticals in freshwater, especially after aging.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Polipropilenos , Polietilenotereftalatos , Nylons , Adsorção , Cloreto de Polivinila , Fluoxetina , Poluentes Químicos da Água/análise , Água Doce , Polietileno , Preparações Farmacêuticas
2.
Chemosphere ; 331: 138691, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37076081

RESUMO

Microplastic research has gained attention due to the increased detection of microplastics (<5 mm size) in the aquatic environment. Most laboratory-based research of microplastics is performed using microparticles from specific suppliers with either superficial or no characterisation performed to confirm the physico-chemical information detailed by the supplier. The current study has selected 21 published adsorption studies to evaluate how the microplastics were characterised by the authors prior experimentation. Additionally, six microplastic types described as 'small' (10-25 µm) and 'large' (100 µm) were commercially acquired from a single supplier. A detailed characterisation was performed using Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction, differential scanning calorimetry, scanning electron microscopy, particle size analysis, and N2-Brunauer, Emmett and Teller adsorption-desorption surface area analysis. The size and the polymer composition of some of the material provided by the supplier was inconsistent with the analytical data obtained. FT-IR spectra of small polypropylene particles indicated either oxidation of the particles or the presence of a grafting agent which was absent in the large particles. A wide range of sizes for the small particles was observed: polyethylene (0.2-549 µm), polyethylene terephthalate (7-91 µm) and polystyrene (1-79 µm). Small polyamide (D50 75 µm) showed a greater median particle size and similar size distribution when compared to large polyamide (D50 65 µm). Moreover, small polyamide was found to be semi-crystalline, while the large polyamide displayed an amorphous form. The type of microplastic and the size of the particles are a key factor in determining the adsorption of pollutants and subsequent ingestion by aquatic organisms. Acquiring uniform particle sizes is challenging, however based on this study, characterisation of any materials used in microplastic-related experiments is critical to ensure reliable interpretation of results, thereby providing a better understanding of the potential environmental consequences of the presence of microplastics in aquatic ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Ecossistema , Nylons , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
Chemosphere ; 310: 136828, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36241123

RESUMO

Cyanobacteria and their toxins are a threat to drinking water safety as increasingly cyanobacterial blooms (mass occurrences) occur in lakes and reservoirs all over the world. Photocatalytic removal of cyanotoxins by solar light active catalysts is a promising way to purify water at relatively low cost compared to modifying existing infrastructure. We have established a facile and low-cost method to obtain TiO2 and g-C3N4 coated floating photocatalysts using recycled glass beads. g-C3N4 coated and TiO2+g-C3N4 co-coated beads were able to completely remove microcystin-LR in artificial fresh water under both natural and simulated solar light irradiation without agitation in less than 2 h. TiO2 coated beads achieved complete removal within 8 h of irradiation. TiO2+g-C3N4 beads were more effective than g-C3N4 beads as demonstrated by the increase reaction rate with reaction constants, 0.0485 min-1 compared to 0.0264 min-1 respectively, with TiO2 alone found to be considerably slower 0.0072 min-1. g-C3N4 based photocatalysts showed a similar degradation pathway to TiO2 based photocatalysts by attacking the C6-C7 double bond on the Adda side chain.


Assuntos
Cianobactérias , Purificação da Água , Toxinas de Cianobactérias , Luz , Purificação da Água/métodos
4.
Water Res ; 226: 119299, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323220

RESUMO

Cyanobacteria and their toxic secondary metabolites present challenges for water treatment globally. In this study we have assessed TiO2 immobilized onto recycled foamed glass beads by a facile calcination method, combined in treatment units with 365 nm UV-LEDs. The treatment system was deployed in mesocosms within a eutrophic Brazilian drinking water reservoir. The treatment units were deployed for 7 days and suppressed cyanobacterial abundance by 85% while at the same time enhancing other water quality parameters; turbidity and transparency improved by 40 and 81% respectively. Genomic analysis of the microbiota in the treated mesocosms revealed that the composition of the cyanobacterial community was affected and the abundance of Bacteroidetes and Proteobacteria increased during cyanobacterial suppression. The effect of the treatment on zooplankton and other eukaryotes was also monitored. The abundance of zooplankton decreased while Chrysophyte and Alveolata loadings increased. The results of this proof-of-concept study demonstrate the potential for full-scale, in-reservoir application of advanced oxidation processes as complementary water treatment processes.


Assuntos
Cianobactérias , Água Potável , Animais , Titânio , Zooplâncton , Fitoplâncton
5.
Environ Pollut ; 303: 119135, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283205

RESUMO

Plastics are utilised globally but are of environmental concern due to their persistence. The global presence of microplastics (particles <5 mm in all dimensions) in freshwater environments is increasingly reported, as has the presence of cyanobacterial toxins, including the microcystins. We elucidated the potential role of microplastics as a vector for eight microcystin analogues. Two sizes of polypropylene (PP) and polyethylene terephthalate (PET) microparticles were evaluated. The median particle size distribution (D50) was 8-28 µm for small particles, and 81-124 µm for large particles. Additionally, microcystin-LR and -LF were evaluated individually using small PP and PET to elucidate the adsorption behaviour in the absence of competition. Microcystin hydrophobicity, polymer material, and particle size were key factors influencing adsorption to the plastic microparticles. The small size PP microparticles demonstrated a high affinity for the 8 microcystin analogues. The proportion of microcystin adsorbed onto the small particles of PP after 48 h contact was between 83 and 100%, depending on the analogue. Of all analogues investigated, only microcystin-LW and -LF adsorbed onto the larger sized PP and PET microparticles. Individually, greater amounts of MC-LF adsorbed onto the small PET (19%) compared to when it was present in the mixture of microcystins (11%). While MC-LR did not adsorb onto small PET microparticles in the mixture, 5% adsorption was observed when individually in contact with small PET microparticles. The results demonstrated that microplastics can adsorb eight different microcystin analogues and that more hydrophobic analogues are more likely to adsorb than less hydrophobic analogues.


Assuntos
Microcistinas , Poluentes Químicos da Água , Adsorção , Toxinas de Cianobactérias , Microcistinas/análise , Microplásticos , Plásticos , Polietilenotereftalatos , Polipropilenos , Poluentes Químicos da Água/análise
6.
J Environ Manage ; 298: 113519, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34411798

RESUMO

To date, the high cost of supplying UV irradiation has prevented the widespread application of UV photolysis and titanium dioxide based photocatalysis in removing undesirable organics in the water treatment sector. To overcome this problem, the use of UV-LEDs (365 nm) for photolysis and heterogeneous photocatalysis applying TiO2 coated glass beads under UV-LED illumination (365 nm) in a pilot scale reactor for the elimination of Microcystis aeruginosa PCC7813 and four microcystin analogues (MC-LR, -LY, -LW, -LF) with a view to deployment in drinking water reservoirs was investigated. UV-A (365 nm) photolysis was shown to be more effective than the UV/TiO2 photocatalytic system for the removal of Microcystis aeruginosa cells and microcystins. During photolysis, cell density significantly decreased over 5 days from an initial concentration of 5.8 × 106 cells mL-1 until few cells were left. Both intra- and extracellular microcystin concentrations were significantly reduced by 100 and 92 %, respectively, by day 5 of the UV treatment for all microcystin analogues. During UV/TiO2 treatment, there was great variability between replicates, making prediction of the effect on cyanobacterial cell and toxin behavior difficult.


Assuntos
Microcistinas , Microcystis , Toxinas Marinhas , Fotólise , Projetos Piloto , Titânio
7.
Sci Total Environ ; 745: 141154, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32758751

RESUMO

Cyanobacteria and their toxic secondary metabolites are a challenge in water treatment due to increased biomass and dissolved metabolites in the raw water. Retrofitting existing water treatment infrastructure is prohibitively expensive or unfeasible, hence 'in-reservoir' treatment options are being explored. In the current study, a treatment system was able to photocatalytically inhibit the growth of Microcystis aeruginosa and remove released microcystins by photocatalysis using titanium dioxide coated, porous foamed glass beads and UV-LEDs (365 nm). A 35% reduction of M. aeruginosa PCC7813 cell density compared to control samples was achieved in seven days. As a function of cell removal, intracellular microcystins (microcystin-LR, -LY, -LW, and -LF) were removed by 49% from 0.69 to 0.35 µg mL-1 in seven days. Microcystins that leaked into the surrounding water from compromised cells were completely removed by photocatalysis. The findings of the current study demonstrate the feasibility of an in-reservoir treatment unit applying low cost UV-LEDs and porous foamed beads made from recycled glass coated with titanium dioxide as a means to control cyanobacteria and their toxins before they can reach the water treatment plant.


Assuntos
Cianobactérias , Microcystis , Microcistinas , Porosidade , Titânio
8.
Chem Commun (Camb) ; 53(72): 10038-10041, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28837187

RESUMO

Cation defects in La and Cr co-doped SrTiO3 have been specifically studied for elucidating correlations between defect concentration, electronic properties, structural properties and photocatalytic activity for H2 production. A moderate cation deficiency can promote the photocatalytic activity by ca. 3 fold, which can be mainly linked to the enhancement of the charge carrier mobility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...