Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 110(2-1): 024212, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39294964

RESUMO

Net velocity has been demonstrated for objects frictionally coupled to a flat plate that oscillates periodically in-plane with two frequencies, provided plate displacement is nonantiperiodic: the ratio of frequencies γ cannot be the ratio of two odd integers. We give a mathematical derivation of the experimentally determined dependence of mean velocity on the relative amplitudes of the two frequency modes, and the phase lag between the modes, when γ=2, and when the magnitude of plate acceleration is much larger than the magnitude of acceleration by static friction. The approach uses an analysis of the symmetry properties of the roots of trigonometric polynomials, without explicit determination of those roots. The behavior when γ=1/2, and specific phase lags that inhibit net velocity for general γ, are also determined.

2.
Lab Chip ; 24(4): 966-974, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38275165

RESUMO

We present vibrational techniques to pump, mix, and separate dry granular materials using multifrequency vibrations applied to a solid substrate with a standard audio system. The direction and velocity of the granular flow are tuned by modulating the sign and amplitude, respectively, of the vibratory waveform, with typical pumping velocities of centimeters per second. Different granular materials are mixed by combining them at Y-shaped junctions, and mixtures of granules with different friction coefficients are separated along straight channels by judicious choice of the vibratory waveform. We demonstrate that the observed velocities accord with a theory valid for sufficiently large or fast vibrations, and we discuss the implications for using vibrational manipulation in conjunction with established microfluidic technologies to combine liquid and dry solid handling operations at sub-millimeter length scales.

3.
Phys Rev E ; 105(6-2): 065001, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854501

RESUMO

It is well established that application of an oscillatory excitation with zero time-average but temporal asymmetry can yield net drift. To date this temporal symmetry breaking and net drift has been explored primarily in the context of point particles, nonlinear optics, and quantum systems. Here, we present two new experimental systems where the impact of temporally asymmetric force excitations can be readily observed with mechanical motion of macroscopic objects: (1) solid centimeter-scale objects placed on a uniform flat surface made to vibrate laterally, and (2) charged colloidal particles in water placed between parallel electrodes with an applied oscillatory electric potential. In both cases, net motion is observed both experimentally and numerically with nonantiperiodic, two-mode, sinusoids where the frequency modes are the ratio of odd and even numbers (e.g., 2Hz and 3Hz). The observed direction of motion is always the same for the same applied waveform, and is readily reversed by changing the sign of the applied waveform, for example, by swapping which electrode is powered and grounded. We extend these results to other nonlinear mechanical systems, and we discuss the implications for facile control of object motion using tunable periodic driving forces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA