Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Asian J Psychiatr ; 96: 104046, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663229

RESUMO

Rare and low-frequency variants contribute to schizophrenia (SCZ), and may influence its age-at-onset (AAO). We examined the association of rare or low-frequency deleterious coding variants in Chinese patients with SCZ. We collected DNA samples in 197 patients with SCZ spectrum disorder and 82 healthy controls (HC), and performed exome sequencing. The AAO variable was ascertained in the majority of SCZ participants for identify the early-onset (EOS, AAO<=18) and adult-onset (AOS, AAO>18) subgroups. We examined the overall association of rare/low-frequency, damaging variants in SCZ versus HC, EOS versus HC, and AOS versus HC at the gene and gene-set levels using Sequence Kernel Association Test. The quantitative rare-variant association test of AAO was conducted. Resampling was used to obtain empirical p-values and to control for family-wise error rate (FWER). In binary-trait association tests, we identified 5 potential candidate risk genes and 10 gene ontology biological processes (GOBP) terms, among which PADI2 reached FWER-adjusted significance. In quantitative rare-variant association tests, we found marginally significant correlations of AAO with alterations in 4 candidate risk genes, and 5 GOBP pathways. Together, the biological and functional profiles of these genes and gene sets supported the involvement of perturbations of neural systems in SCZ, and altered immune functions in EOS.


Assuntos
Idade de Início , Sequenciamento do Exoma , Predisposição Genética para Doença , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/imunologia , Feminino , Masculino , Adulto , Adulto Jovem , Predisposição Genética para Doença/genética , China , Adolescente , Povo Asiático/genética , População do Leste Asiático
2.
medRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045317

RESUMO

Background: Rare variants are likely to contribute to schizophrenia (SCZ), given the large discrepancy between the heritability estimated from twin and GWAS studies. Furthermore, the nature of the rare-variant contribution to SCZ may vary with the "age-at-onset" (AAO), since early-onset has been suggested as being indicative of neurodevelopment deviance. Objective: To examine the association of rare deleterious coding variants in early- and adult-onset SCZ in a Chinese sample. Method: Exome sequencing was performed on DNA from 197 patients with SCZ spectrum disorder and 82 healthy controls (HC) of Chinese ancestry recruited in Hong Kong. We also gathered AAO information in the majority of SCZ samples. Patients were classified into early-onset (EOS, AAO<18) and adult-onset (AOS, AAO>18). We collapsed the rare variants to improve statistical power and examined the overall association of rare variants in SCZ versus HC, EOS versus HC, and AOS versus HC at the gene and gene-set levels by Sequence Kernel Association Test. The quantitative rare-variant association test of AAO was also conducted. We focused on variants which were predicted to have a medium or high impact on the protein-encoding process as defined by Ensembl. We applied a 100000-time permutation test to obtain empirical p-values, with significance threshold set at p < 1e -3 to control family-wise error rates. Moreover, we compared the burden of targeted rare variants in significant risk genes and gene sets in cases and controls. Results: Based on several binary-trait association tests (i.e., SCZ vs HC, EOS vs HC and AOS vs HC), we identified 7 candidate risk genes and 20 gene ontology biological processes (GOBP) terms, which exhibited higher burdens in SCZ than in controls. Based on quantitative rare-variant association tests, we found that alterations in 5 candidate risk genes and 7 GOBP pathways were significantly correlated with AAO. Based on biological and functional profiles of the candidate risk genes and gene sets, our findings suggested that, in addition to the involvement of perturbations in neural systems in SCZ in general, altered immune responses may be specifically implicated in EOS. Conclusion: Disrupted immune responses may exacerbate abnormal perturbations during neurodevelopment and trigger the early onset of SCZ. We provided evidence of rare variants increasing SCZ risk in the Chinese population.

3.
medRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37790317

RESUMO

Psychotic disorders are debilitating conditions with disproportionately high public health burden. Genetic studies indicate high heritability, but current polygenic scores (PGS) account for only a fraction of variance in psychosis risk. PGS often show poor portability across ancestries, performing significantly worse in non-European populations. Pathway-specific PGS (pPGS), which restrict PGS to genomic locations within distinct biological units, could lead to increased mechanistic understanding of pathways that lead to risk and improve cross-ancestry prediction by reducing noise in genetic predictors. This study examined the predictive power of genome-wide PGS and nine pathway-specific pPGS in a unique Chinese-ancestry sample of deeply-phenotyped psychosis patients and non-psychiatric controls. We found strong evidence for the involvement of schizophrenia-associated risk variants within "nervous system development" (p=2.5e-4) and "regulation of neuron differentiation" pathways (p=3.0e-4) in predicting risk for psychosis. We also found the "ion channel complex" pPGS, with weights derived from GWAS of bipolar disorder, to be strongly associated with the number of inpatient psychiatry admissions a patient experiences (p=1.5e-3) and account for a majority of the signal in the overall bipolar PGS. Importantly, although the schizophrenia genome-wide PGS alone explained only 3.7% of the variance in liability to psychosis in this Chinese ancestry sample, the addition of the schizophrenia-weighted pPGS for "nervous system development" and "regulation of neuron differentiation" increased the variance explained to 6.9%, which is on-par with the predictive power of PGS in European ancestry samples. Thus, not only can pPGS provide greater insight into mechanisms underlying genetic risk for disease and clinical outcomes, but may also improve cross-ancestry risk prediction accuracy.

4.
Transl Psychiatry ; 8(1): 125, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967385

RESUMO

An unstable epigenome is implicated in the pathophysiology of neurodevelopmental disorders such as schizophrenia and autism. This is important because the epigenome is potentially modifiable. We have previously reported that adult offspring exposed to maternal immune activation (MIA) prenatally have significant global DNA hypomethylation in the hypothalamus. However, what genes had altered methylation state, their functional effects on gene expression and whether these changes can be moderated, have not been addressed. In this study, we used next-generation sequencing (NGS) for methylome profiling in a MIA rodent model of neurodevelopmental disorders. We assessed whether differentially methylated regions (DMRs) affected the chromatin state by mapping known DNase I hypersensitivity sites (DHSs), and selected overlapping genes to confirm a functional effect of MIA on gene expression using qPCR. Finally, we tested whether methylation differences elicited by MIA could be limited by post-natal dietary (omega) n-3 polyunsaturated fatty acid (PUFA) supplementation. These experiments were conducted using hypothalamic brain tissue from 12-week-old offspring of mice injected with viral analogue PolyI:C on gestation day 9 of pregnancy or saline on gestation day 9. Half of the animals from each group were fed a diet enriched with n-3 PUFA from weaning (MIA group, n = 12 units, n = 39 mice; Control group, n = 12 units, n = 38 mice). The results confirmed our previous finding that adult offspring exposed to MIA prenatally had significant global DNA hypomethylation. Furthermore, genes linked to synaptic plasticity were over-represented among differentially methylated genes following MIA. More than 80% of MIA-induced hypomethylated sites, including those affecting chromatin state and MECP2 binding, were stabilised by the n-3 PUFA intervention. MIA resulted in increased expression of two of the 'top five' genes identified from an integrated analysis of DMRs, DHSs and MECP2 binding sites, namely Abat (t = 2.46, p < 0.02) and Gnas9 (t = 2.96, p < 0.01), although these changes were not stabilised by dietary intervention. Thus, prenatal MIA exposure impacts upon the epigenomic regulation of gene pathways linked to neurodevelopmental conditions; and many of the changes can be attenuated by a low-cost dietary intervention.


Assuntos
Metilação de DNA , Suplementos Nutricionais , Epigênese Genética , Ácidos Graxos Ômega-3/farmacologia , Poli I-C/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Transtorno Autístico/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Modelos Lineares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/administração & dosagem , Gravidez , Esquizofrenia/fisiopatologia
5.
Behav Genet ; 46(4): 529-37, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26826030

RESUMO

Testis specific protein, Y-encoded-like 2 (TSPYL2) regulates the expression of genes encoding glutamate receptors. Glutamate pathology is implicated in neurodevelopmental conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD) and schizophrenia. In line with this, a microduplication incorporating the TSPYL2 locus has been reported in people with ADHD. However, the role of Tspyl2 remains unclear. Therefore here we used a Tspyl2 loss-of-function mouse model to directly examine how this gene impacts upon behavior and brain anatomy. We hypothesized that Tspyl2 knockout (KO) would precipitate a phenotype relevant to neurodevelopmental conditions. In line with this prediction, we found that Tspyl2 KO mice were marginally more active, had significantly impaired prepulse inhibition, and were significantly more 'sensitive' to the dopamine agonist amphetamine. In addition, the lateral ventricles were significantly smaller in KO mice. These findings suggest that disrupting Tspyl2 gene expression leads to behavioral and brain morphological alterations that mirror a number of neurodevelopmental psychiatric traits.


Assuntos
Encéfalo/anormalidades , Encéfalo/crescimento & desenvolvimento , Proteínas Nucleares/metabolismo , Anfetamina/administração & dosagem , Anfetamina/farmacologia , Animais , Comportamento Animal , Proteínas de Ciclo Celular , Ventrículos Cerebrais/efeitos dos fármacos , Ventrículos Cerebrais/patologia , Relações Interpessoais , Imageamento por Ressonância Magnética , Masculino , Camundongos Knockout , Atividade Motora , Proteínas Nucleares/deficiência , Inibição Pré-Pulso , Cloreto de Sódio/administração & dosagem , Cloreto de Sódio/farmacologia
6.
Schizophr Bull ; 40(4): 777-86, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24043878

RESUMO

Schizophrenia is a highly heritable, severe psychiatric disorder affecting approximately 1% of the world population. A substantial portion of heritability is still unexplained and the pathophysiology of schizophrenia remains to be elucidated. To identify more schizophrenia susceptibility loci, we performed a genome-wide association study (GWAS) on 498 patients with schizophrenia and 2025 controls from the Han Chinese population, and a follow-up study on 1027 cases and 1005 controls. In the follow-up study, we included 384 single nucleotide polymorphisms (SNPs) which were selected from the top hits in our GWAS (130 SNPs) and from previously implicated loci for schizophrenia based on the SZGene database, NHGRI GWAS Catalog, copy number variation studies, GWAS meta-analysis results from the international Psychiatric Genomics Consortium (PGC) and candidate genes from plausible biological pathways (254 SNPs). Within the chromosomal region Xq28, SNP rs2269372 in RENBP achieved genome-wide significance with a combined P value of 3.98 × 10(-8) (OR of allele A = 1.31). SNPs with suggestive P values were identified within 2 genes that have been previously implicated in schizophrenia, MECP2 (rs2734647, P combined = 8.78 × 10(-7), OR = 1.28; rs2239464, P combined = 6.71 × 10(-6), OR = 1.26) and ARHGAP4 (rs2269368, P combined = 4.74 × 10(-7), OR = 1.25). In addition, the patient sample in our follow-up study showed a significantly greater burden for pre-defined risk alleles based on the SNPs selected than the controls. This indicates the existence of schizophrenia susceptibility loci among the SNPs we selected. This also further supports multigenic inheritance in schizophrenia. Our findings identified a new schizophrenia susceptibility locus on Xq28, which harbor the genes RENBP, MECP2, and ARHGAP4.


Assuntos
Povo Asiático/genética , Carboidratos Epimerases/genética , Proteínas de Transporte/genética , Cromossomos Humanos X/genética , Proteínas Ativadoras de GTPase/genética , Proteína 2 de Ligação a Metil-CpG/genética , Esquizofrenia/genética , Alelos , Estudos de Casos e Controles , China , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Modelos Logísticos , Masculino , Polimorfismo de Nucleotídeo Único
7.
Am J Med Genet B Neuropsychiatr Genet ; 153B(1): 103-13, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19367581

RESUMO

Chromosome 3p was reported by previous studies as one of the regions showing strong evidence of linkage with schizophrenia. We performed a fine-mapping association study of a 6-Mb high-LD and gene-rich region on 3p in a Southern Chinese sample of 489 schizophrenia patients and 519 controls to search for susceptibility genes. In the initial screen, 4 SNPs out of the 144 tag SNPs genotyped were nominally significant (P < 0.05). One of the most significant SNPs (rs3732530, P = 0.0048) was a non-synonymous SNP in the neuroglycan C (NGC, also known as CSPG5) gene, which belongs to the neuregulin family. The gene prioritization program Endeavor ranked NGC 8th out of the 129 genes in the 6-Mb region and the highest among the genes within the same LD block. Further genotyping of NGC revealed 3 more SNPs to be nominally associated with schizophrenia. Three other genes (NRG1, ErbB3, ErbB4) involved in the neuregulin pathways were subsequently genotyped. Interaction analysis by multifactor dimensionality reduction (MDR) revealed a significant two-SNP interaction between NGC and NRG1 (P = 0.015) and three-SNP interactions between NRG1 and ErbB4 (P = 0.009). The gene NGC is exclusively expressed in the brain. It is implicated in neurodevelopment in rats and was previously shown to promote neurite outgrowth. Methamphetamine, a drug that may induce psychotic symptoms, was reported to alter the expression of NGC. Taken together, these results suggest that NGC may be a novel candidate gene, and neuregulin signaling pathways may play an important role in schizophrenia.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/genética , Predisposição Genética para Doença , Neurregulinas/genética , Esquizofrenia/terapia , Estudos de Casos e Controles , China , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...