Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167186, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730051

RESUMO

This work presents the geochemical characterization of two Martian analogues located in the Basque-Cantabrian Basin: Enekuri and Fruiz. In contrast to previous works carried out on the coastline analogues Meñakoz and Armintza (Biscay, Spain), these new outcrops are not in contact with sea-water nowadays. Hence, the weathering processes observed in Enekuri and Fruiz (inland) are different from those observed in Armintza and Meñakoz (coastline). In this way, among all the mineral phases found the only ones in common between inland and coastline outcrops are albite and chlorites, minerals that were formed in aqueous conditions. Understanding the differences presented in both types of outcrops could help to interpret the future results from the missions Mars2020 and the ExoMars2022, since coastline outcrops are affected by sea-water weathering and inland outcrops are altered by the high biological activity.

2.
Anal Chim Acta ; 1197: 339499, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35168731

RESUMO

The study of space has always been a field of great interest and thus space missions are becoming more and more ambitious with time. Therefore, with the 50th anniversary of the first spacecraft to land on Mars, a review about how traditional analytical techniques have been adapted to the era of in situ space exploration is presented. From the Viking Project to the future MMX mission, the techniques used for the in situ study of the geochemistry of the Martian surface is described. These techniques have been differentiated according to the type of analysis: elemental and molecular. On the one hand, among the elemental analytical techniques the XRF, APXS, ISE and LIBS stand out. On the other hand, GCMS, TEGA, MBS, XRD, Raman and IR spectroscopy have been the molecular techniques used in the missions to Mars. Miniaturization, real-time measurements, automation, low power consumption and reliability of operation under extreme conditions are some of the major challenges that analytical chemistry has faced as a result of the technological and scientific requirements of space missions. In this way, this review gathers all the in situ analytical techniques that have reached the surface of Mars onboard landers or rovers with the aim of studying its geochemistry.


Assuntos
Marte , Voo Espacial , Exobiologia , Meio Ambiente Extraterreno , Reprodutibilidade dos Testes
3.
Astrobiology ; 21(3): 332-344, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33481644

RESUMO

Calcium sulfates are known to be potential reservoirs of organic compounds and have been detected on Mars. However, not all data that indicate the presence of sulfates collected by the Mars Exploration Rovers (Spirit and Opportunity) and Curiosity rover can be explained by the different calcium sulfate polymorphs, and therefore, mixtures of calcium sulfates with other single sulfates must be considered. In addition, the presence of mixed calcium sulfates supports the data and indicates that the molar ratio of sulfate/calcium is >1. To obtain adequate spectroscopic information of mixed-cation sulfates to be used in the interpretation of data from Mars in the next few years, the thermodynamically stable syngenite (K2Ca(SO4)2·H2O) and görgeyite (K2Ca5(SO4)6·H2O) mixed-cation sulfates have been studied along with the interrelationships in the gypsum-syngenite-görgeyite system to understand their possible formation on Mars. Raman spectroscopy and Visible-Near Infrared-Shortwave Infrared (VisNIR) spectroscopy have been used for their characterization to increase the databases for the two future Mars exploration missions, Mars2020 and ExoMars2022, where both techniques will be implemented. These VisNIR data can also help with the interpretation of spectral data of salt deposits on Mars acquired by the OMEGA and CRISM spectrometers onboard the Mars Express and Mars Reconnaissance orbiters. This work demonstrates that syngenite (K2Ca(SO4)2·H2O) easily precipitates without the need for hydrothermal conditions, which, depending on the ion concentrations, may precipitate in different proportions with gypsum. Furthermore, in this study, we also demonstrate that, under hydrothermal conditions, görgeyite (K2Ca5(SO4)6·H2O) would also be highly likely to form and may also be identified on Mars together with syngenite and gypsum.


Assuntos
Sulfato de Cálcio , Marte , Meio Ambiente Extraterreno , Compostos Orgânicos , Análise Espectral Raman , Sulfatos
4.
ACS Earth Space Chem ; 5(6): 1333-1342, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35673558

RESUMO

A lunar feldspathic breccia meteorite, the Northwest Africa (NWA) 11273, was analyzed to compensate the lack of scientific data available about its mineralogy and geochemistry. In order to obtain a deeper characterization of the sample, a strategy based on the combination of nondestructive spectroscopic techniques such as X-ray fluorescence and Raman spectroscopy is used. Both techniques are being used in spatial missions by the Perseverance Rover, so their combination in the laboratory is here proposed as an optimal strategy to study the complete mineralogy of the sample. In addition to finding the minerals indicated by the Meteoritical Society (anorthite, olivine, pyroxene, kamacite, and troilite), other minor minerals were identified, such as zircon and ilmenite, which are minerals related to the Moon geology, as well as calcite and sulfate which can be considered products of terrestrial weathering. Finally, secondary minerals related to alteration processes were also found, such as hematite, quartz, and anatase. In this work, the alteration processes that gave rise to the detected secondary minerals have been proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...