Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38645016

RESUMO

The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model whereby successive generations of PNs sequentially migrate to deep then progressively more superficial layers, but its biological significance remains unclear; and the role of iNG in this process is unknown. Using genetic strategies linking PN birth-dating to projection mapping in mice, we found that the laminar deployment of IP-derived PNs substantially deviate from an inside-out rule: PNs destined to non-consecutive layers are generated at the same time, and different PN types of the same layer are generated at non-contiguous times. The overarching scheme of iNG is the sequential specification and precise laminar deployment of projection-defined PN types, which may contribute to the orderly assembly of cortical output channels and processing streams. HIGHLIGHTS: - Each IP is fate-restricted to generate a pair of near-identical PNs - Corticogenesis involves the orderly generation of fate-restricted IP temporal cohorts - IP temporal cohorts sequentially as well as concurrently specify multiple PN types - The deployment of PN types to specific layers does not follow an inside-out order.

2.
Brain Behav Evol ; 98(4): 210-228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37379819

RESUMO

As the highest center of sensory processing, initiation, and modulation of behavior, the pallium has seen prominent changes during the course of vertebrate evolution, culminating in the emergence of the mammalian isocortex. The processes underlying this remarkable evolution have been a matter of debate for several centuries. Recent studies using modern techniques in a host of vertebrate species are beginning to reveal mechanistic principles underlying pallial evolution from the developmental, connectome, transcriptome and cell type levels. We attempt here to trace and reconstruct the evolution of pallium from an evo-devo perspective, focusing on two phylogenetic extremes in vertebrates - cyclostomes and mammals, while considering data from intercalated species. We conclude that two fundamental processes of evolutionary change - conservation and diversification of cell types, driven by functional demands, are the primary forces dictating the emergence of the diversity of pallial structures and imbibing them with the ability to mediate and control the exceptional variety of motor behaviors across vertebrates.


Assuntos
Evolução Biológica , Neocórtex , Animais , Filogenia , Vertebrados , Mamíferos
3.
Neuron ; 111(16): 2557-2569.e4, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37348506

RESUMO

Variations in size and complexity of the cerebral cortex result from differences in neuron number and composition, rooted in evolutionary changes in direct and indirect neurogenesis (dNG and iNG) that are mediated by radial glia and intermediate progenitors (IPs), respectively. How dNG and iNG differentially contribute to neuronal number, diversity, and connectivity are unknown. Establishing a genetic fate-mapping method to differentially visualize dNG and iNG in mice, we found that while both dNG and iNG contribute to all cortical structures, iNG contributes the largest relative proportions to the hippocampus and neocortex. Within the neocortex, whereas dNG generates all major glutamatergic projection neuron (PN) classes, iNG differentially amplifies and diversifies PNs within each class; the two pathways generate distinct PN types and assemble fine mosaics of lineage-based cortical subnetworks. Our results establish a ground-level lineage framework for understanding cortical development and evolution by linking foundational progenitor types and neurogenic pathways to PN types.


Assuntos
Córtex Cerebral , Neocórtex , Camundongos , Animais , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Neocórtex/fisiologia , Interneurônios , Neurogênese/fisiologia , Hipocampo
4.
Curr Opin Neurobiol ; 81: 102726, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37148649

RESUMO

Diverse glutamatergic projection neurons (PNs) mediate myriad processing streams and output channels of the cerebral cortex. Yet, how different types of neural progenitors, such as radial glia (RGs) and intermediate progenitors (IPs), produce PN diversity, and hierarchical organization remains unclear. A fundamental issue is whether RGs constitute a homogeneous, multipotent lineage capable of generating all major PN types through a temporally regulated developmental program, or whether RGs comprise multiple transcriptionally heterogenous pools, each fated to generate a subset of PNs. Beyond RGs, the role of IPs in PN diversification remains underexplored. Addressing these questions requires tracking PN developmental trajectories with cell-type resolution - from transcription factor-defined RGs and IPs to their PN progeny, which are defined not only by laminar location but also by projection patterns and gene expression. Advances in cell-type resolution genetic fate mapping, axon tracing, and spatial transcriptomics may provide the technical capability for answering these fundamental questions.


Assuntos
Córtex Cerebral , Neurônios , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição , Células-Tronco
5.
Stem Cells ; 41(3): 242-251, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36636025

RESUMO

Chromodomain helicase DNA-binding protein 5 (Chd5) is an ATP-dependent chromatin remodeler that promotes neuronal differentiation. However, the mechanism behind the action of Chd5 during neurogenesis is not clearly understood. Here we use transcriptional profiling of cells obtained from Chd5 deficient mice at early and late stages of neuronal differentiation to show that Chd5 regulates neurogenesis by directing stepwise transcriptional changes. During early stages of neurogenesis, Chd5 promotes expression of the proneural transcription factor Six3 to repress Wnt5a, a non-canonical Wnt ligand essential for the maturation of neurons. This previously unappreciated ability of Chd5 to transcriptionally repress neuronal maturation factors is critical for both lineage specification and maturation. Thus, Chd5 facilitates early transcriptional changes in neural stem cells, thereby initiating transcriptional programs essential for neuronal fate specification.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neurônios/metabolismo , Cromatina/metabolismo , Neurogênese/genética , Diferenciação Celular/genética
6.
Nature ; 598(7879): 182-187, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616069

RESUMO

Diverse types of glutamatergic pyramidal neurons mediate the myriad processing streams and output channels of the cerebral cortex1,2, yet all derive from neural progenitors of the embryonic dorsal telencephalon3,4. Here we establish genetic strategies and tools for dissecting and fate-mapping subpopulations of pyramidal neurons on the basis of their developmental and molecular programs. We leverage key transcription factors and effector genes to systematically target temporal patterning programs in progenitors and differentiation programs in postmitotic neurons. We generated over a dozen temporally inducible mouse Cre and Flp knock-in driver lines to enable the combinatorial targeting of major progenitor types and projection classes. Combinatorial strategies confer viral access to subsets of pyramidal neurons defined by developmental origin, marker expression, anatomical location and projection targets. These strategies establish an experimental framework for understanding the hierarchical organization and developmental trajectory of subpopulations of pyramidal neurons that assemble cortical processing networks and output channels.


Assuntos
Córtex Cerebral/citologia , Regulação da Expressão Gênica/genética , Ácido Glutâmico/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo , Animais , Linhagem da Célula/genética , Córtex Cerebral/metabolismo , Masculino , Camundongos , Células Piramidais/classificação , Fatores de Transcrição/metabolismo
7.
Genes (Basel) ; 10(10)2019 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614829

RESUMO

Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.


Assuntos
Desenvolvimento Embrionário , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular/genética , Movimento Celular/imunologia , Desenvolvimento Embrionário/genética , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Fatores de Transcrição GATA/química , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Proteínas HMGB/química , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fatores de Transcrição Box Pareados/química , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética
8.
Cereb Cortex ; 27(5): 2841-2856, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27178193

RESUMO

A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Células-Tronco/fisiologia , Tálamo/citologia , Tálamo/metabolismo , Animais , Movimento Celular , Células Cultivadas , Embrião de Mamíferos , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Gravidez , Receptores de Glutamato Metabotrópico/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo
9.
Cell Mol Life Sci ; 73(13): 2467-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26994098

RESUMO

The components of the nervous system are assembled in development by the process of cell migration. Although the principles of cell migration are conserved throughout the brain, different subsystems may predominantly utilize specific migratory mechanisms, or may display unusual features during migration. Examining these subsystems offers not only the potential for insights into the development of the system, but may also help in understanding disorders arising from aberrant cell migration. The olfactory system is an ancient sensory circuit that is essential for the survival and reproduction of a species. The organization of this circuit displays many evolutionarily conserved features in vertebrates, including molecular mechanisms and complex migratory pathways. In this review, we describe the elaborate migrations that populate each component of the olfactory system in rodents and compare them with those described in the well-studied neocortex. Understanding how the components of the olfactory system are assembled will not only shed light on the etiology of olfactory and sexual disorders, but will also offer insights into how conserved migratory mechanisms may have shaped the evolution of the brain.


Assuntos
Movimento Celular , Bulbo Olfatório/embriologia , Córtex Olfatório/embriologia , Condutos Olfatórios , Roedores/embriologia , Animais , Evolução Biológica , Hipotálamo/citologia , Hipotálamo/embriologia , Neurônios/citologia , Bulbo Olfatório/citologia , Córtex Olfatório/citologia , Prosencéfalo/citologia , Prosencéfalo/embriologia , Olfato , Órgão Vomeronasal/citologia , Órgão Vomeronasal/embriologia
10.
Nat Neurosci ; 16(2): 157-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23292680

RESUMO

The accessory olfactory bulb (AOB) is a critical olfactory structure that has been implicated in mediating social behavior. It receives input from the vomeronasal organ and projects to targets in the amygdaloid complex. Its anterior and posterior components (aAOB and pAOB) display molecular, connectional and functional segregation in processing reproductive and defensive and aggressive behaviors, respectively. We observed a dichotomy in the development of the projection neurons of the aAOB and pAOB in mice. We found that they had distinct sites of origin and that different regulatory molecules were required for their specification and migration. aAOB neurons arose locally in the rostral telencephalon, similar to main olfactory bulb neurons. In contrast, pAOB neurons arose caudally, from the neuroepithelium of the diencephalic-telencephalic boundary, from which they migrated rostrally to reach their destination. This unusual origin and migration is conserved in Xenopus, providing an insight into the origin of a key component of this system in evolution.


Assuntos
Vias Aferentes/fisiologia , Evolução Biológica , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/fisiologia , Bulbo Olfatório , Fatores Etários , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diencéfalo/citologia , Diencéfalo/fisiologia , Eletroporação/métodos , Embrião de Mamíferos , Feminino , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Microinjeções/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Bulbo Olfatório/citologia , Bulbo Olfatório/embriologia , Bulbo Olfatório/crescimento & desenvolvimento , Oócitos , Técnicas de Cultura de Órgãos , Gravidez , Telencéfalo/citologia , Telencéfalo/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Tumoral p73 , Proteínas Supressoras de Tumor , Órgão Vomeronasal/citologia , Órgão Vomeronasal/embriologia , Órgão Vomeronasal/crescimento & desenvolvimento , Xenopus
11.
F1000Res ; 2: 205, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25110573

RESUMO

The LIM-homeodomain (LIM-HD) family of transcription factors is well known for its functions during several developmental processes including cell fate specification, cell migration and axon guidance, and its members play fundamental roles in hippocampal development. The hippocampus is a structure that displays striking activity dependent plasticity.  We examined whether LIM-HD genes and their co-factors are regulated during kainic acid induced seizure in the adult rat hippocampus as well as in early postnatal rats, when the hippocampal circuitry is not fully developed.  We report a distinct and field-specific regulation of LIM-HD genes Lhx1, Lhx2, and Lhx9, LIM-only gene Lmo4, and cofactor Clim1a in the adult hippocampus after seizure induction. In contrast none of these genes displayed altered levels upon induction of seizure in postnatal animals.  Our results provide evidence of temporal and spatial seizure mediated regulation of LIM-HD family members and suggest that LIM-HD gene function may be involved in activity dependent plasticity in the adult hippocampus.

12.
Nat Neurosci ; 10(9): 1141-50, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17694053

RESUMO

The amygdaloid complex consists of diverse nuclei that belong to distinct functional systems, yet many issues about its development are poorly understood. Here, we identify a stream of migrating cells that form specific amygdaloid nuclei in mice. In utero electroporation showed that this caudal amygdaloid stream (CAS) originated in a unique domain at the caudal telencephalic pole that is contiguous with the dorsal pallium, which was previously thought to generate only neocortical cells. The CAS and the neocortex share mechanisms for specification (transcription factors Tbr1, Lhx2 and Emx1/2) and migration (reelin and Cdk5). Reelin, a critical cue for migration in the neocortex, and Cdk5, which is specifically required for migration along radial glia in the neocortex, were both selectively required for the normal migration of the CAS, but not for that of other amygdaloid nuclei. This is first evidence of a dorsal pallial contribution to the amygdala, demonstrating a developmental and mechanistic link between the amygdala and the neocortex.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular/genética , Quinase 5 Dependente de Ciclina/metabolismo , Eletroporação/métodos , Embrião de Mamíferos , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo , Fatores de Transcrição/metabolismo
13.
J Neurosci ; 27(9): 2290-7, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17329426

RESUMO

The development of the olfactory system in vertebrates is a multistep process, in which several regulatory molecules are required at different stages. The development of the olfactory sensory epithelium and its projection to the olfactory bulb are both known to require the LIM-homeodomain transcription factor Lhx2. We examined whether Lhx2 plays a role in the development of the OB itself, as well as its projection to the olfactory cortex. Although there is no morphological OB protuberance in the Lhx2 mutant, mitral cells are normally specified and cluster in a displaced olfactory bulb-like structure (OBLS). The OBLS is not able to pioneer the lateral olfactory tract (LOT) projection in vivo or when provided control (host) telencephalic territory in an in vitro assay. Strikingly, the mutant OBLS is capable of projecting along the LOT if provided with an existing normal LOT in the host explant. This is the first report of a role for a transcription factor expressed in the OB that selectively affects the axon guidance but not the specification of mitral cells. Furthermore, the Lhx2 mutant lateral telencephalon does not support growth of an LOT projection from control OB explants. The defect correlates with the disruption of a cellular mechanism that is thought to be critical for LOT pathfinding: a specialized cell population, the "lot cells," is mislocalized in the Lhx2 mutant. In addition, the expression of Sema6A is aberrantly upregulated. Together, these findings reveal a dual role for Lhx2, in the OB as well as in the lateral telencephalon, for establishing the LOT projection.


Assuntos
Proteínas de Homeodomínio/fisiologia , Condutos Olfatórios/embriologia , Fatores de Transcrição/fisiologia , Animais , Proteínas com Homeodomínio LIM , Camundongos , Camundongos Mutantes , Mutação , Bulbo Olfatório/embriologia , Semaforinas/metabolismo , Telencéfalo/embriologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...