Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 24(6): 2493-2504, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38525102

RESUMO

Potassium carbonate sesquihydrate has previously been identified as a promising material for thermochemical energy storage. The hydration and cyclic behavior have been extensively studied in the literature, but detailed investigation into the different processes occurring during dehydration is lacking. In this work, a systematic investigation into the different dehydration steps is conducted. It is found that at higher temperatures, dehydration of pristine material occurs as a single process since water removal from the pristine crystals is difficult. After a single cycle, due to morphological changes, dehydration now occurs as two processes, starting at lower temperatures. The morphological changes open new pathways for water removal at the newly generated edges, corners, and steps of the crystal surface. The observations from this work may contribute to material design as they elucidate the relation between material structure and behavior.

2.
Cryst Growth Des ; 23(3): 1343-1354, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36879773

RESUMO

The hydration of salts has gained particular interest within the frame of thermochemical energy storage. Most salt hydrates expand when absorbing water and shrink when desorbing, which decreases the macroscopic stability of salt particles. In addition, the salt particle stability can be compromised by a transition to an aqueous salt solution, called deliquescence. The deliquescence often leads to a conglomeration of the salt particles, which can block the mass and heat flow through a reactor. One way of macroscopically stabilizing the salt concerning expansion, shrinkage, and conglomeration is the confinement inside a porous material. To study the effect of nanoconfinement, composites of CuCl2 and mesoporous silica (pore size 2.5-11 nm) were prepared. Study of sorption equilibrium showed that the pore size had little or no effect on the onsets of (de)hydration phase transition of the CuCl2 inside the silica gel pores. At the same time, isothermal measurements showed a significant lowering of the deliquescence onset in water vapor pressure. The lowering of the deliquescence onset leads to its overlap with hydration transition for the smallest pores (<3.8 nm). A theoretical consideration of the described effects is given in the framework of nucleation theory.

3.
Energy Fuels ; 36(23): 14464-14475, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36483576

RESUMO

This work investigates the reactions occurring in K2CO3-H2O-CO2 under ambient CO2 pressures in temperature and vapor pressure ranges applicable for domestic thermochemical heat storage. The investigation shows that depending on reaction conditions, the primary product of a reaction is K2CO3·1.5H2O, K2CO3·2KHCO3·1.5H2O, or a mixture of both. The formation of K2CO3·1.5H2O is preferred far above the equilibrium conditions for the hydration reaction. On the other hand, the formation of double salt is preferred at conditions where hydration reaction is inhibited or impossible, as the thermogravimetric measurements identified a new phase transition line below the hydration equilibrium line. The combined X-ray diffraction, thermogravimetric analysis, and Fourier-transform infrared spectroscopy study indicates that this transition line corresponds to the formation of K2CO3·2KHCO3, which was not observed in any earlier study. In view of thermochemical heat storage, the formation of K2CO3·2KHCO3·(1.5H2O) increases the minimum charging temperature by approximately 40 °C. Nevertheless, the energy density and cyclability of the storage material can be preserved if the double salt is decomposed after each cycle.

4.
Polymers (Basel) ; 14(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215714

RESUMO

Reaction and transport processes in thin layers of between 10 and 1000 µm are important factors in determining their performance, stability and degradation. In this review, we discuss the potential of high-gradient Nuclear Magnetic Resonance (NMR) as a tool to study both reactions and transport in these layers spatially and temporally resolved. As the NMR resolution depends on gradient strength, the high spatial resolution required in submillimeter layers can only be achieved with specially designed high-gradient setups. Three different high-gradient setups exist: STRAFI (STRay FIeld), GARField (Gradient-At-Right-angles-to-Field) and MOUSE (MObile Universal Surface Explorer). The aim of this review is to provide a detailed overview of the three techniques and their ability to visualize reactions and transport processes using physical observable properties such as hydrogen density, diffusion, T1- and T2-relaxation. Finally, different examples from literature will be presented to illustrate the wide variety of applications that can be studied and the corresponding value of the techniques.

5.
J Colloid Interface Sci ; 556: 584-591, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31491680

RESUMO

HYPOTHESIS: Drying of latex dispersions often results in particle gradients at the latex-air interface. We expect that, by increasing the carboxylic acid content of latex particles, inter-particle interactions at the interface change. With dilatational rheology one could detect particle-particle interactions in an early stage of the drying process and elucidate the nature of these interactions. EXPERIMENTS: Acrylic latex dispersions were prepared with different amounts of methacrylic acid (MAA), ranging from 2 to 10 wt% on dry mass. Dilatational rheology studies during drying at different relative humidities RH were performed using profile analysis tensiometry. Visco-elastic properties of latex surfaces were used to identify inter-particle interactions at the surfaces depending on the drying rate and particle composition. FINDINGS: Drying at 85% RH did not show significant changes of the mechanical properties of the latex surfaces. Drying at 65 and 53% RH resulted in a change of the mechanical properties, ultimately showing non-linear visco-elastic behavior. This indicates that capillary and/or Van der Waals forces were operating between particles at the surface. With increasing MAA content the viscous contribution decreased, possibly due to the formation of more gel-like structures at the particle surface due to higher solubility of polymer segments near to the surface.

6.
J Chem Phys ; 148(19): 194502, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307202

RESUMO

Nucleation of highly supersaturated water vapor in helium, methane, and argon carrier gases at 350 K was investigated using molecular dynamics simulations. Nucleation rates obtained from the mean first passage time (MFPT) method are typically one order of magnitude lower than those from the Yasuoka and Matsumoto method, which can be attributed to the overestimation of the critical cluster size in the MFPT method. It was found that faster nucleation will occur in carrier gases that have better thermalization properties such that latent heat is removed more efficiently. These thermalization properties are shown to be strongly dependent on the molecular mass and Lennard-Jones (LJ) parameters. By varying the molecular mass, for unaltered LJ parameters, it was found that a heavier carrier gas removes less heat although it has a higher collision rate with water than a lighter carrier. Thus, it was shown that a clear distinction between water vapor-carrier gas collisions and water cluster-carrier gas collisions is indispensable for understanding the effect of collision rates on thermalization. It was also found that higher concentration of carrier gas leads to higher nucleation rate. The nucleation rates increased by a factor of 1.3 for a doubled concentration and by almost a factor of two for a tripled concentration.

7.
Magn Reson Imaging ; 23(2): 273-6, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15833626

RESUMO

Salts can damage building materials by chemical reactions or crystallization, which is a serious threat to cultural heritage. In order to develop better conservation techniques, more knowledge of the crystallization processes is needed. In a porous material, the size of a salt crystal is limited by the sizes of the pores. It has been predicted that as a consequence, the solubility of a salt increases with decreasing pore size. This increase seems to be related to an increase of the stress generated by a crystal on the pore wall. It has been suggested that the resulting stress could become high enough to induce failure. We have studied the crystallization of salts in porous materials with well-defined pore sizes. Samples were saturated at 40 degrees C with saturated Na2SO4 and Na2CO3 solutions. Next we have cooled the samples to 0 degrees C and waited for nucleation. After nucleation occurred, the solubility in the porous material was measured with nuclear magnetic resonance (NMR) as a function of the temperature. The measurements on Na2CO3 indeed show an increase in solubility with a decrease in pore size. For Na2SO4, we did not observe a pore size-dependent solubility. However, we have to remark that these results show a metastable crystal phase. The results can be used to calculate the actual pressure exerted by the crystals onto the pore wall.


Assuntos
Materiais de Construção , Espectroscopia de Ressonância Magnética , Sais , Cristalização , Análise de Falha de Equipamento , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...