Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 88(12): 6729-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696467

RESUMO

UNLABELLED: The causative agent of dengue fever, dengue virus (DENV), is transmitted by mosquitoes, and as distribution of these insects has expanded, so has dengue-related disease. DENV is a member of the Flaviviridae family and has 4 distinct serotypes (DENV-1, -2, -3, and -4). No lasting cross protection is afforded to heterologous serotypes following infection by any one of the individual serotypes. The presence of nonneutralizing antibodies to one serotype can facilitate the occurrence of more-severe dengue hemorrhagic fever through immune enhancement upon infection with a second serotype. For this reason, the development of a safe, tetravalent vaccine to produce a balanced immune response to all four serotypes is critical. We have developed a novel approach to produce safe and effective live-attenuated vaccines for DENV and other insect-borne viruses. Host range (HR) mutants of each DENV serotype were created by truncating transmembrane domain 1 of the E protein and selecting for strains of DENV that replicated well in insect cells but not mammalian cells. These vaccine strains were tested for immunogenicity in African green monkeys (AGMs). No vaccine-related adverse events occurred. The vaccine strains were confirmed to be attenuated in vivo by infectious center assay (ICA). Analysis by 50% plaque reduction neutralization test (PRNT50) established that by day 62 postvaccination, 100% of animals seroconverted to DENV-1, -2, -3, and -4. Additionally, the DENV HR tetravalent vaccine (HR-Tet) showed a tetravalent anamnestic immune response in 100% (16/16) of AGMs after challenge with wild-type (WT) DENV strains. IMPORTANCE: We have generated a live attenuated viral (LAV) vaccine capable of eliciting a strong immune response in African green monkeys (AGMs) in a single dose. This vaccine is delivered by injecting one of four attenuated serotypes into each limb of the animal. 100% of animals given the vaccine generated antibodies against all 4 serotypes, and this response was found to be balanced in nature. This is also one of the first studies of dengue in AGMs, and our study suggests that viremia and antibody response in AGMs may be similar to those seen in DENV infection in humans.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Dengue/prevenção & controle , Dengue/virologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Vírus da Dengue/classificação , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Especificidade de Hospedeiro , Humanos , Especificidade da Espécie , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética
2.
J Virol ; 87(12): 6748-57, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23552427

RESUMO

A vaccine against Chikungunya virus (ChikV), a reemerging pathogenic arbovirus, has been made by attenuating wild-type (WT) virus via truncation of the transmembrane domain (TMD) of E2 and selecting for host range (HR) mutants. Mice are a standard model system for ChikV disease and display the same symptoms of the disease seen in humans. Groups of mice were inoculated with one of three ChikV HR mutants to determine the ability of each mutant strain to elicit neutralizing antibody and protective immunity upon virus challenge. One mutant, ChikV TM17-2, fulfilled the criteria for a good vaccine candidate. It displayed no reactogenicity at the site of injection, no tissue disease in the foot/ankle and quadriceps, and no evidence of viral persistence in foot/ankle tissues 21 days after infection. Upon challenge with a highly pathogenic strain of ChikV, the mutant blocked viral replication in all tissues tested. This study identified a ChikV HR mutant that grows to high levels in insect cells but was restricted in the ability to assemble virus in mammalian cells in vitro. The study demonstrates that these HR strains are attenuated in the mammalian host and warrant further development as live-attenuated vaccine strains.


Assuntos
Infecções por Alphavirus/prevenção & controle , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus Chikungunya/imunologia , Vírus Chikungunya/patogenicidade , Deleção de Sequência , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Animais , Linhagem Celular , Febre de Chikungunya , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Especificidade de Hospedeiro , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...