Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717257

RESUMO

Dynamic behaviors of the three-dimensional re-entrant auxetic cellular structure have been investigated by performing beam-based crushing simulation. Detailed deformation process subjected to various crushing velocities has been described, where three specific crushing modes have been identified with respect to the crushing velocity and the relative density. The crushing strength of the 3D re-entrant auxetic structure reveals to increase with increasing crushing velocity and relative density. Moreover, an analytical formula of dynamic plateau stress has been deduced, which has been validated to present theoretical predictions agreeing well with simulation results. By establishing an analytical model, the role of relative density on the energy absorption capacity of the 3D re-entrant auxetic structure has been further studied. The results indicate that the specific plastic energy dissipation is increased by increasing the relative density, while the normalized plastic energy dissipation has an opposite sensitivity to the relative density when the crushing velocity exceeds the critical transition velocity. The study in this work can provide insights into the dynamic property of the 3D re-entrant auxetic structure and provides an extensive reference for the crushing resistance design of the auxetic structure.

2.
Stapp Car Crash J ; 46: 165-94, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17096224

RESUMO

A combination of finite element modeling and sled test reconstruction of real-world infant head injury scenarios has been used to investigate infant head impact response and tolerance to skull fracture. Studying the role of cranial sutures on infant skull response was of particular interest. The specific injury scenarios selected for reconstruction involved infants in rear-facing child restraint systems (CRS) who sustained skull fractures and brain injuries from deploying passenger-side frontal airbags. Approximations of the loading conditions for three injury cases, as well as estimates of loading conditions not expected to result in head injury, were produced in the laboratory. A finite element model (FEM) of a six-month-old infant head was developed using available material properties and humanlike geometry. The infant head FEM was used to simulate different injury and no-injury loading conditions based on CRS response data from the reconstruction tests. Acceleration results and stress distributions are consistent with the level of injury in the different real-world cases. Cranial sutures have a negligible effect on stress distribution in the infant skull. Logistic regression analysis was used to estimate threshold stresses associated with skull fracture. The acceleration responses of the infant head FEM and the CRABI ATD were compared for the no-injury and injury-producing conditions. Results suggest that the biofidelic loading range of the CRABI ATD may be limited to impacts at or below injury-producing loading severities. Provisional injury assessment reference values corresponding to the threshold for minor skull fracture over a limited loading range were estimated for the current CRABI ATD, and recommended improvements for the CRABI ATD head are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...