Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0293214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37856511

RESUMO

Lake sediments store metal contaminants from historic pesticide and herbicide use and mining operations. Historical regional smelter operations in the Puget Sound lowlands have resulted in arsenic concentrations exceeding 200 µg As g-1 in urban lake sediments. Prior research has elucidated how sediment oxygen demand, warmer sediment temperatures, and alternating stratification and convective mixing in shallow lakes results in higher concentrations of arsenic in aquatic organisms when compared to deeper, seasonally stratified lakes with similar levels of arsenic pollution in profundal sediments. In this study we examine the trophic pathways for arsenic transfer through the aquatic food web of urban lakes in the Puget Sound lowlands, measuring C and N isotopes-to determine resource usage and trophic level-and total and inorganic arsenic in primary producers and primary and secondary consumers. Our results show higher levels of arsenic in periphyton than in other primary producers, and higher concentrations in snails than zooplankton or insect macroinvertebrates. In shallow lakes arsenic concentrations in littoral sediment are similar to deep profundal sediments due to arsenic remobilization, mixing, and redeposition, resulting in direct arsenic exposure to littoral benthic organisms such as periphyton and snails. The influence of littoral sediment on determining arsenic trophic transfer is evidenced by our results which show significant correlations between total arsenic in littoral sediment and total arsenic in periphyton, phytoplankton, zooplankton, snails, and fish across multiple lakes. We also found a consistent relationship between percent inorganic arsenic and trophic level (determined by δ15N) in lakes with different depths and mixing regimes. Cumulatively, these results combine to provide a strong empirical relationship between littoral sediment arsenic levels and inorganic arsenic in edible species that can be used to screen lakes for potential human health risk using an easy, inexpensive sampling and analysis method.


Assuntos
Arsênio , Poluentes Químicos da Água , Animais , Humanos , Arsênio/análise , Lagos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Metais/análise , Zooplâncton/metabolismo , Cadeia Alimentar
2.
Sci Total Environ ; 770: 145318, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33736365

RESUMO

Arsenic (As) causes cancer and non-cancer health effects in humans. Previous research revealed As concentrations over 200 µg g-1 in lake sediments in the south-central Puget Sound region affected by the former ASARCO copper smelter in Ruston, WA, and significant bioaccumulation of As in plankton in shallow lakes. Enhanced uptake occurs during summertime stratification and near-bottom anoxia when As is mobilized from sediments. Periodic mixing events in shallow lakes allow dissolved As to mix into oxygenated waters and littoral zones where biota reside. We quantify As concentrations and associated health risks in human-consumed tissues of sunfish [pumpkinseed (Lepomis gibbosus) and bluegill (Lepomis macrochirus)], crayfish [signal (Pacifastacus leniusculus) and red swamp (Procambarus clarkii)], and snails [Chinese mystery (Bellamya chinensis)] from lakes representing a gradient of As contamination and differing mixing regimes. In three shallow lakes with a range of arsenic in profundal sediments (20 to 206 µg As g-1), mean arsenic concentrations ranged from 2.9 to 46.4 µg g-1 in snails, 2.6 to 13.9 µg g-1 in crayfish, and 0.07 to 0.61 µg g-1 in sunfish. Comparatively, organisms in the deep, contaminated lake (208 µg g-1 in profundal sediments) averaged 11.8 µg g-1 in snails and 0.06 µg g-1 in sunfish. Using inorganic As concentrations, we calculated that consuming aquatic species from the most As-contaminated shallow lake resulted in 4-10 times greater health risks compared to the deep lake with the same arsenic concentrations in profundal sediments. We show that dynamics in shallow, polymictic lakes can result in greater As bioavailability compared to deeper, seasonally stratified lakes. Arsenic in oxygenated waters and littoral sediments was more indicative of exposure to aquatic species than profundal sediments, and therefore we recommend that sampling methods focus on these shallow zones to better indicate the potential for uptake into organisms and human health risk.


Assuntos
Arsênio , Poluentes Químicos da Água , Animais , Arsênio/análise , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Lagos , Plâncton , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...