Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Insect Mol Biol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963286

RESUMO

The black soldier fly (BSF), Hermetia illucens, has the ability to efficiently bioremediate organic waste into usable bio-compounds. Understanding the impact of domestication and mass rearing on fitness and production traits is therefore important for sustainable production. This study aimed to assess patterns of genomic diversity and its association to phenotypic development across early generations of mass rearing under two selection strategies: selection for greater larval mass (SEL lines) and no direct artificial selection (NS lines). Genome-wide single nucleotide polymorphism (SNP) data were generated using 2bRAD sequencing, while phenotypic traits relating to production and population fitness were measured. Declining patterns of genomic diversity were observed across three generations of captive breeding, with the lowest diversity recorded for the F3 generation of both selection lines, most likely due to founder effects. The SEL cohort displayed statistically significantly greater larval weight com the NS lines with pronounced genetic and phenotypic directional changes across generations. Furthermore, lower genetic and phenotypic diversity, particularly for fitness traits, were evident for SEL lines, illustrating the trade-off between selecting for mass and the resulting decline in population fitness. SNP-based heritability was significant for growth, but was low or non-significant for fitness traits. Genotype-phenotype correlations were observed for traits, but individual locus effect sizes where small and very few of these loci demonstrated a signature for selection. Pronounced genetic drift, due to small effective population sizes, is likely overshadowing the impacts of selection on genomic diversity and consequently phenotypic development. The results hold particular relevance for genetic management and selective breeding for BSF in future.

2.
Insect Mol Biol ; 32(2): 86-105, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322045

RESUMO

The micro-evolutionary forces that shape genetic diversity during domestication have been assessed in many plant and animal systems. However, the impact of these processes on gene expression, and consequent functional adaptation to artificial environments, remains under-investigated. In this study, whole-transcriptome dynamics associated with the early stages of domestication of the black soldier fly (BSF), Hermetia illucens, were assessed. Differential gene expression (DGE) was evaluated in relation to (i) generational time within the cultured environment (F2 vs. F3), and (ii) two selection strategies [no artificial selective pressure (NS); and selection for greater larval mass (SEL)]. RNA-seq was conducted on 5th instar BSF larvae (n = 36), representing equal proportions of the NS (F2 = 9; F3 = 9) and SEL (F2 = 9; F3 = 9) groups. A multidimensional scaling plot revealed greater gene expression variability within the NS and F2 subgroups, while the SEL group clustered separately with lower levels of variation. Comparisons between generations revealed 898 differentially expressed genes (DEGs; FDR-corrected p < 0.05), while between selection strategies, 213 DEGs were observed (FDR-corrected p < 0.05). Enrichment analyses revealed that metabolic, developmental, and defence response processes were over-expressed in the comparison between F2 and F3 larvae, while metabolic processes were the main differentiating factor between NS and SEL lines. This illustrates the functional adaptations that occur in BSF colonies across generations due to mass rearing; as well as highlighting genic dynamics associated with artificial selection for production traits that might inform future selective breeding strategies.


Assuntos
Dípteros , Animais , Dípteros/genética , Larva/metabolismo , Evolução Biológica , Fenótipo , Expressão Gênica
3.
J Fish Biol ; 100(1): 134-149, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34658037

RESUMO

The common smooth-hound shark, Mustelus mustelus, is a widely distributed demersal shark under heavy exploitation from various fisheries throughout its distribution range. To assist in the development of appropriate management strategies, the authors evaluate stock structure, site fidelity and movement patterns along the species' distribution in southern Africa based on a combination of molecular and long-term tag-recapture data. Eight species-specific microsatellite markers (N = 73) and two mitochondrial genes, nicotinamide adenine dehydrogenase subunit 4 and control region (N = 45), did not reveal any significant genetic structure among neighbouring sites. Nonetheless, tagging data demonstrate a remarkable degree of site fidelity with 76% of sharks recaptured within 50 km of the original tagging location. On a larger geographic scale, dispersal is governed by oceanographic features as demonstrated by the lack of movements across the Benguela-Agulhas transition zone separating the South-East Atlantic Ocean (SEAO) and South-West Indian Ocean (SWIO) populations. Microsatellite data supported very shallow ocean-based structure (SEAO and SWIO) and historical southward gene flow following the Agulhas Current, corroborating the influence of this dynamic oceanographic system on gene flow. Moreover, no movements between Namibia and South Africa were observed, indicating that the Lüderitz upwelling formation off the Namibian coast acts as another barrier to dispersal and gene flow. Overall, these results show that dispersal and stock structure of M. mustelus are governed by a combination of behavioural traits and oceanographic features such as steep temperature gradients, currents and upwelling systems.


Assuntos
Tubarões , Animais , Oceano Atlântico , Pesqueiros , Fluxo Gênico , Repetições de Microssatélites , Tubarões/genética
4.
Insects ; 12(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34940170

RESUMO

Mass rearing the black soldier fly, Hermetia illucens, for waste bioremediation and valorisation is gaining traction on a global scale. While the health and productivity of this species are underpinned by associations with microbial taxa, little is known about the factors that govern gut microbiome assembly, function, and contributions towards host phenotypic development in actively feeding larvae. In the present study, a 16S rDNA gene sequencing approach applied to a study system incorporating both feed substrate and genetic variation is used to address this knowledge gap. It is determined that the alpha diversity of larval gut bacterial communities is driven primarily by features of the larval feed substrate, including the diversity of exogenous bacterial populations. Microbiome beta diversity, however, demonstrated patterns of differentiation consistent with an influence of diet, larval genetic background, and a potential interaction between these factors. Moreover, evidence for an association between microbiome structure and the rate of larval fat accumulation was uncovered. Taxonomic enrichment analysis and clustering of putative functional gut profiles further suggested that feed-dependent turnover in microbiome communities is most likely to impact larval characteristics. Taken together, these findings indicate that host-microbiome interactions in this species are complex yet relevant to larval trait emergence.

5.
Insects ; 12(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064077

RESUMO

The black soldier fly (BSF), Hermetia illucens, is a promising candidate for the emerging insect farming industry with favourable characteristics for both bioremediation and production of animal delivered nutritive and industrial compounds. The genetic management of commercial colonies will become increasingly important for the sustainability of the industry. However, r-selected life history traits of insects pose challenges to conventional animal husbandry and breeding approaches. In this study, the long-term genetic effects of mass-rearing were evaluated as well as mating systems in the species to establish factors that might influence genetic diversity, and by implication fitness and productivity in commercial colonies. Population genetic parameters, based on microsatellite markers, were estimated and compared amongst two temporal wild sampling populations and four generations (F28, F48, F52, and F62) of a mass-reared colony. Furthermore, genetic relationships amongst mate pairs were evaluated and parentage analysis was performed to determine the oc-currence of preferential mate choice and multiple paternity. The mass-reared colony showed a reduction in genetic diversity and evidence for inbreeding with significant successive generational genetic differentiation from the wild progenitor population. Population-level analysis also gave the first tentative evidence of positive assortative mating and genetic polyandry in BSF. The homoge-neity of the mass-reared colony seems to result from a dual action caused by small effective popu-lation size and increased homozygosity due to positive assortative mating. However, the high ge-netic diversity in the wild and a polyandrous mating system might suggest the possible restoration of diversity in mass-reared colonies through augmentation with the wild population.

6.
PLoS One ; 14(12): e0226505, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31869351

RESUMO

Nile crocodiles are apex predators widely distributed in sub-Saharan Africa that have been viewed and managed as a single species. A complex picture of broad and fine-scale phylogeographic patterns that includes the recognition of two species (Crocodylus niloticus and Crocodylus suchus), and the structuring of populations according to river basins has started to emerge. However, previous studies surveyed a limited number of samples and geographical regions, and large areas of the continent remained unstudied. This work aimed at a fine scale portrait of Nile crocodile populations at the fringes of their geographic distribution in southern Africa. Wild and captive individuals were sampled across four major river systems (Okavango, Lower Kunene, Lower Shire and Limpopo) and the KwaZulu-Natal region. A multi-marker approach was used to infer phylogeographic and genetic diversity patterns, including new and public mitochondrial data, and a panel of 11 nuclear microsatellites. All individuals belonged to a phylogenetic clade previously associated with the C. niloticus species, thus suggesting the absence of C. suchus in southern Africa. The distribution of mitochondrial haplotypes indicated ancestral genetic connectivity across large areas, with loss of diversity along the north-south axis. Genetic variation partitioned the populations primarily into western and eastern regions of southern Africa, and secondarily into the major river systems. Populations were partitioned into five main groups corresponding to the Lower Kunene, the Okavango, the Lower Shire, and the Limpopo rivers, and the KwaZulu-Natal coastal region. All groups show evidence of recent bottlenecks and small effective population sizes. Long-term genetic diversity is likely to be compromised, raising conservation concern. These results emphasize the need for local genetic assessment of wild populations of Nile crocodiles to inform strategies for management of the species in southern Africa.


Assuntos
Jacarés e Crocodilos/classificação , Jacarés e Crocodilos/genética , Variação Genética , África Austral/epidemiologia , Jacarés e Crocodilos/crescimento & desenvolvimento , Animais , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Demografia , Haplótipos , Repetições de Microssatélites/genética , Filogenia , Filogeografia/estatística & dados numéricos , Densidade Demográfica , Rios
7.
Mitochondrial DNA B Resour ; 3(2): 962-963, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-33490549

RESUMO

We present the complete mitochondrial genome of the common smoothhound , Mustelus mustelus,which is 16,755 bp long, contains 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and non-coding control region. All protein-coding genes begin with the ATG codon, except for the COI gene, which begins with GTG. Six protein-coding genes terminated with the TAA codon, and six with incomplete codons, T or TA. The phylogenetic reconstruction places M. mustelus within the genus Mustelus, with the closest relationship to the placental species, M. griseus. This mitogenome provides valuable information to further unravel the evolution of alternate reproductive modes within the genus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...