Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 203: 77-92, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36184001

RESUMO

The term extracellular vesicles (EVs) has been recommended to describe various membrane-bound vesicles secreted by most living cells and found in various biological fluids. They gained growing interest as mediators of cell-cell communication and for their roles in different patho-physiological processes. In addition, they were recently considered as disease biomarkers and new drug delivery systems. However, it is still difficult to link a biological function to a specific EV population among the heterogenous EV mixture secreted in the extracellular space due to limitations of optimal isolation methods. EV classification according to their size as small (<200 nm) and large (>200 nm) vesicles is also completed by the identification of selected proteins, nucleic acids and lipids. In this review, we summarized briefly knowledge about the composition and role of EV lipids that received less attention compared to their protein and nucleic acid content. Lipids are not only essential structural components of EVs, but can give important information on their biogenesis. Especially, we discussed our recent data showing the utility of bis(monoacylglycero)phosphate (BMP), a specific endolysosomal lipid marker, that could sign the endosomal origin of small EVs, classically named as exosomes.


Assuntos
Exossomos , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Exossomos/metabolismo , Biomarcadores/metabolismo , Comunicação Celular , Proteínas/metabolismo , Lipídeos
2.
Cell Rep ; 37(6): 109935, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758297

RESUMO

Sphingomyelin (SM) is a mammalian lipid mainly distributed in the outer leaflet of the plasma membrane (PM). We show that peripheral myelin protein 2 (PMP2), a member of the fatty-acid-binding protein (FABP) family, can localize at the PM and controls the transbilayer distribution of SM. Genetic screening with genome-wide small hairpin RNA libraries identifies PMP2 as a protein involved in the transbilayer movement of SM. A biochemical assay demonstrates that PMP2 is a phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-binding protein. PMP2 induces the tubulation of model membranes in a PI(4,5)P2-dependent manner, accompanied by the modification of the transbilayer membrane distribution of lipids. In the PM of PMP2-overexpressing cells, inner-leaflet SM is increased whereas outer-leaflet SM is reduced. PMP2 is a causative protein of Charcot-Marie-Tooth disease (CMT). A mutation in PMP2 associated with CMT increases its affinity for PI(4,5)P2, inducing membrane tubulation and the subsequent transbilayer movement of lipids.


Assuntos
Membrana Celular/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Proteína P2 de Mielina/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Esfingomielinas/metabolismo , Animais , Transporte Biológico , Membrana Celular/genética , Doença de Charcot-Marie-Tooth/genética , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Mutação , Proteína P2 de Mielina/genética
3.
Biochimie ; 179: 247-256, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33159981

RESUMO

Viruses, including the novel coronavirus SARS-CoV-2, redirect infected cell metabolism to their own purposes. After binding to its receptor angiotensin-converting enzyme 2 (ACE2) on the cell surface, the SARS-CoV-2 is taken up by receptor-mediated endocytosis ending in the acidic endolysosomal compartment. The virus hijacks the endosomal machinery leading to fusion of viral and endosomal membranes and release of the viral RNA into the cytosol. This mini-review specifically highlights the membrane lipid organization of the endosomal system focusing on the unconventional and late endosome/lysosome-specific phospholipid, bis(monoacylglycero)phosphate (BMP). BMP is enriched in alveolar macrophages of lung, one of the target tissue of SARS-CoV-2. This review details the BMP structure, its unsaturated fatty acid composition and fusogenic properties that are essential for the highly dynamic formation of the intraluminal vesicles inside the endosomes. Interestingly, BMP is necessary for infection and replication of enveloped RNA virus such as SARS-CoV-1 and Dengue virus. We also emphasize the role of BMP in lipid sorting and degradation, especially cholesterol transport in cooperation with Niemann Pick type C proteins (NPC 1 and 2) and with some oxysterol-binding protein (OSBP)-related proteins (ORPs) as well as in sphingolipid degradation. Interestingly, numerous virus infection required NPC1 as well as ORPs along the endocytic pathway. Furthermore, BMP content is increased during pathological endosomal lipid accumulation in various lysosomal storage disorders. This is particularly important knowing the high percentage of patients with metabolic disorders among the SARS-CoV-2 infected patients presenting severe forms of COVID-19.


Assuntos
Endocitose , Interações entre Hospedeiro e Microrganismos , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , SARS-CoV-2/fisiologia , Colesterol/metabolismo , Homeostase , Humanos
4.
Biochimie ; 178: 26-38, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32659447

RESUMO

Bis(monoacylglycero)phosphate (BMP), also known as lysobisphosphatidic acid (LBPA), is a phospholipid specifically enriched in the late endosome-lysosome compartment playing a crucial role for the fate of endocytosed components. Due to its presence in extracellular fluids during diseases associated with endolysosomal dysfunction, it is considered as a possible biomarker of disorders such as genetic lysosomal storage diseases and cationic amphiphilic drug-induced phospholipidosis. However, there is no true validation of this biomarker in human studies, nor a clear identification of the carrier of this endolysosome-specific lipid in biofluids. The present study demonstrates that in absence of any sign of renal failure, BMP, especially all docosahexaenoyl containing species, are significantly increased in the urine of patients treated with the antiarrhythmic drug amiodarone. Such urinary BMP increase could reflect a generalized drug-induced perturbation of the endolysosome compartment as observed in vitro with amiodarone-treated human macrophages. Noteworthy, BMP was associated with extracellular vesicles (EVs) isolated from human urines and extracellular medium of human embryonic kidney HEK293 cells and co-localizing with classical EV protein markers CD63 and ALIX. In the context of drug-induced endolysosomal dysfunction, increased BMP-rich EV release could be useful to remove excess of undigested material. This first human pilot study not only reveals BMP as a urinary biomarker of amiodarone-induced endolysosomal dysfunction, but also highlights its utility to prove the endosomal origin of EVs, also named as exosomes. This peculiar lipid already known as a canonical late endosome-lysosome marker, may be thus considered as a new lipid marker of urinary exosomes.


Assuntos
Endossomos/química , Endossomos/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , Idoso , Amiodarona/efeitos adversos , Animais , Antiarrítmicos/efeitos adversos , Biomarcadores/urina , Endossomos/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Nefropatias/induzido quimicamente , Lisofosfolipídeos/química , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monoglicerídeos/química , Projetos Piloto , Ratos , Células THP-1
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(9): 1247-1257, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31136841

RESUMO

Bis(Monoacylglycero) Phosphate (BMP) is a unique phospholipid localized in late endosomes, a critical cellular compartment in low density lipoprotein (LDL)-cholesterol metabolism. In previous work, we demonstrated the important role of BMP in the regulation of macrophage cholesterol homeostasis. BMP exerts a protective role against the pro-apoptotic effect of oxidized LDL (oxLDL) by reducing the production of deleterious oxysterols. As the intracellular sterol traffic in macrophages is in part regulated by oxysterol binding protein (OSBP) and OSBP-related proteins (ORPs), we investigated the role of ORP11, localized at the Golgi-late endosomes interface, in the BMP-mediated protection from oxLDL/oxysterol cytotoxicity. Stably silencing of ORP11 in mouse RAW264.7 macrophages via a shRNA lentiviruses system had no effect on BMP production. However, ORP11 knockdown abrogated the protective action of BMP against oxLDL induced apoptosis. In oxLDL treated control cells, BMP enrichment was associated with reduced generation of 7-oxysterols, while these oxysterol species were abundant in the ORP11 knock-down cells. Of note, BMP enrichment in ORP11 knock-down cells was associated with a drastic increase in free cholesterol and linked to a decrease of cholesterol efflux. The expression of ATP-binding cassette-transporter G1 (ABCG1) was also reduced in the ORP11 knock-down cells. These observations demonstrate a cooperative function of OPR11 and BMP, in intracellular cholesterol trafficking in cultured macrophages. We suggest that BMP favors the egress of cholesterol from late endosomes via an ORP11-dependent mechanism, resulting in a reduced production of cytotoxic 7-oxysterols.


Assuntos
Lipoproteínas LDL/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Monoglicerídeos/metabolismo , Receptores de Esteroides/metabolismo , Animais , Apoptose , Colesterol/metabolismo , Humanos , Camundongos , Células RAW 264.7
6.
Sci Rep ; 9(1): 5812, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967612

RESUMO

Ceramide phosphoethanolamine (CPE), a major sphingolipid in invertebrates, is crucial for axonal ensheathment in Drosophila. Darkfield microscopy revealed that an equimolar mixture of bovine buttermilk CPE (milk CPE) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (diC18:1 PC) tends to form tubules and helical ribbons, while pure milk CPE mainly exhibits amorphous aggregates and, at low frequency, straight needles. Negative staining electron microscopy indicated that helices and tubules were composed of multilayered 5-10 nm thick slab-like structures. Using different molecular species of PC and CPE, we demonstrated that the acyl chain length of CPE but not of PC is crucial for the formation of tubules and helices in equimolar mixtures. Incubation of the lipid suspensions at the respective phase transition temperature of CPE facilitated the formation of both tubules and helices, suggesting a dynamic lipid rearrangement during formation. Substituting diC18:1 PC with diC18:1 PE or diC18:1 PS failed to form tubules and helices. As hydrated galactosylceramide (GalCer), a major lipid in mammalian myelin, has been reported to spontaneously form tubules and helices, it is believed that the ensheathment of axons in mammals and Drosophila is based on similar physical processes with different lipids.


Assuntos
Drosophila/metabolismo , Galactosilceramidas/metabolismo , Membranas/química , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo , Animais , Fasciculação Axônica/fisiologia , Bicamadas Lipídicas/química , Conformação Molecular , Sistema Nervoso/metabolismo , Transição de Fase
7.
Chem Phys Lipids ; 216: 132-141, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30194925

RESUMO

Sphingomyelin (SM) is a major sphingolipid in mammalian cells whereas its analog, ceramide phosphoethanolamine (CPE) is found in trace amounts in mammalian cells and in larger amounts in invertebrates such as insect cells like Drosophila melanogaster. To visualize endogenous SM or CPE, we need specific probes able to recognize the chemical structure of the lipid, rather than its physical property. A limited number of proteins is known to specifically and strongly bind SM or CPE. These proteins are either toxins produced by non-mammalian organisms, subunits or fragments of toxins or a protein that has similar structure to a toxin. These proteins labeled with small fluorophore (e.g. Alexa Fluor) or conjugated to fluorescent proteins (e.g. mCherry) or other types of markers (e.g. 125I, maltose-binding protein) are used to detect SM or CPE. Here we summarize the characteristics of specific SM-binding proteins, lysenin and equinatoxin II; CPE- and SM/cholesterol (Chol) binding aegerolysin proteins, pleurotolysin A2, ostreolysin and erylysin A and SM/Chol-binding protein, nakanori. Then we give examples of their applications including their limitations related not only to their lipid specificity and binding constants, but also to the lipid organization in the membrane.


Assuntos
Venenos de Cnidários/química , Proteínas Fúngicas/química , Proteínas Hemolisinas/química , Sondas Moleculares/análise , Sondas Moleculares/química , Esfingomielinas/análise , Toxinas Biológicas/química , Animais , Venenos de Cnidários/análise , Proteínas Fúngicas/análise , Proteínas Hemolisinas/análise , Humanos , Toxinas Biológicas/análise
8.
Biochimie ; 153: 232-237, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29704538

RESUMO

Oxidized LDL (OxLDL) that are enriched in products of lipid peroxidation including oxysterols have been shown to induce cellular oxidative stress and cytotoxicity therefore accelerating atheroma plaque formation. Upon oxLDL exposure of THP-1 macrophages, intracellular oxidation of LDL derived-cholesterol as well as endogenous cholesterol was increased. The oxysterols intracellularly produced were efficiently exported to HDL whereas apolipoprotein A1 was inefficient. These findings prompted us to investigate the consequences of modification of HDL by oxidation and glycation as observed in type 2 diabetes with respect to oxysterol and cholesterol efflux. We show that efflux of oxysterols was significantly impaired after in vitro oxidation and glycoxidation of HDL whereas glycation alone had no impact. Cholesterol efflux was only slightly decreased by oxHDL or glycoxidized HDL and not changed with glycated HDL. The defect of HDL towards oxysterol efflux was also observed with HDL isolated from diabetic subjects as compared to healthy controls. These findings support a deleterious cellular retention of oxysterols due to dysfunctional HDL in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Oxisteróis/metabolismo , Transporte Biológico , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/patologia , Feminino , Glucose/metabolismo , Humanos , Masculino , Oxirredução , Células THP-1
9.
Semin Cell Dev Biol ; 73: 188-198, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28751253

RESUMO

Lysenin, which is an earthworm toxin, strongly binds to sphingomyelin (SM). Lysenin oligomerizes on SM-rich domains and can induce cell death by forming pores in the membrane. In this review, the assembly of lysenin on SM-containing membranes is discussed mostly on the basis of the information gained by atomic force microscopy (AFM). AFM data show that lysenin assembles into a hexagonal close packed (hcp) structure by rapid reorganization of its oligomers on an SM/cholesterol membrane. In case of a phase-separated membrane of SM, lysenin induces phase mixing as a result of pore formation in SM-rich domains, and consequently its hcp assembly covers the entire membrane. Besides the lytic action, lysenin is important as an SM marker and its pore has the potential to be used as a biosensor in the future. These points are also highlighted in this review.


Assuntos
Microscopia de Força Atômica , Esfingomielinas/química , Esfingomielinas/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Esfingomielinas/farmacologia , Termodinâmica , Toxinas Biológicas/farmacologia
10.
FASEB J ; 31(4): 1301-1322, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27492925

RESUMO

We identified a novel, nontoxic mushroom protein that specifically binds to a complex of sphingomyelin (SM), a major sphingolipid in mammalian cells, and cholesterol (Chol). The purified protein, termed nakanori, labeled cell surface domains in an SM- and Chol-dependent manner and decorated specific lipid domains that colocalized with inner leaflet small GTPase H-Ras, but not K-Ras. The use of nakanori as a lipid-domain-specific probe revealed altered distribution and dynamics of SM/Chol on the cell surface of Niemann-Pick type C fibroblasts, possibly explaining some of the disease phenotype. In addition, that nakanori treatment of epithelial cells after influenza virus infection potently inhibited virus release demonstrates the therapeutic value of targeting specific lipid domains for anti-viral treatment.-Makino, A., Abe, M., Ishitsuka, R., Murate, M., Kishimoto, T., Sakai, S., Hullin-Matsuda, F., Shimada, Y., Inaba, T., Miyatake, H., Tanaka, H., Kurahashi, A., Pack, C.-G., Kasai, R. S., Kubo, S., Schieber, N. L., Dohmae, N., Tochio, N., Hagiwara, K., Sasaki, Y., Aida, Y., Fujimori, F., Kigawa, T., Nishibori, K., Parton, R. G., Kusumi, A., Sako, Y., Anderluh, G., Yamashita, M., Kobayashi, T., Greimel, P., Kobayashi, T. A novel sphingomyelin/cholesterol domain-specific probe reveals the dynamics of the membrane domains during virus release and in Niemann-Pick type C.


Assuntos
Colesterol/metabolismo , Proteínas Fúngicas/farmacologia , Grifola/química , Microdomínios da Membrana/efeitos dos fármacos , Doença de Niemann-Pick Tipo C/metabolismo , Esfingomielinas/metabolismo , Sítios de Ligação , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/virologia , Ligação Proteica , Liberação de Vírus
11.
J Biol Chem ; 291(50): 26109-26125, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27815506

RESUMO

Hormone-sensitive acute steroid biosynthesis requires trafficking of cholesterol from intracellular sources to the inner mitochondrial membrane. The precise location of the intracellular cholesterol and its transport mechanism are uncertain. Perfringolysin O, produced by Clostridium perfringens, binds cholesterol. Its fourth domain (D4) retains cholesterol-binding properties but not cytotoxicity. We transfected steroidogenic MA-10 cells of mouse Leydig cell tumors with the mCherry-D4 plasmid. Tagged D4 with fluorescent proteins enabled us to track cholesterol. The staining was primarily localized to the inner leaflet of the plasma membrane and was partially released upon treatment with dibutyryl-cAMP (Bt2cAMP), a cAMP analog. Inhibitors of cholesterol import into mitochondria blocked steroidogenesis and prevented release of D4 (and presumably cholesterol) from the plasma membrane. We conclude that the bulk of the steroidogenic pool of cholesterol, mobilized by Bt2cAMP for acute steroidogenesis, originates from the plasma membrane. Treatment of the cells with steroid metabolites, 22(R)-hydroxycholesterol and pregnenolone, also reduced D4 release from the plasma membrane, perhaps evidence for a feedback effect of elevated steroid formation on cholesterol release. Interestingly, D4 staining was localized to endosomes during Bt2cAMP stimulation suggesting that these organelles are on the route of cholesterol trafficking from the plasma membrane to mitochondria. Finally, D4 was expressed in primary rat Leydig cells with a lentivirus and was released from the plasma membrane following Bt2cAMP treatment. We conclude that the plasma membrane is the source of cholesterol for steroidogenesis in these cells as well as in MA-10 cells.


Assuntos
Membrana Celular/metabolismo , Hidroxicolesteróis/metabolismo , Células Intersticiais do Testículo/metabolismo , Mitocôndrias/metabolismo , Pregnenolona/metabolismo , Animais , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Bucladesina/farmacologia , Linhagem Celular Tumoral , Membrana Celular/genética , Proteínas Hemolisinas/biossíntese , Proteínas Hemolisinas/genética , Células Intersticiais do Testículo/citologia , Masculino , Camundongos , Mitocôndrias/genética , Ratos
12.
Biochimie ; 130: 81-90, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27693589

RESUMO

In this mini-review, we summarize current knowledge about the lipid-binding characteristics of two types of toxins used to visualize the membrane distribution of phosphoethanolamine-containing lipid species: the glycerophospholipid, phosphatidylethanolamine (PE) and the sphingolipid, ceramide phosphoethanolamine (CPE). The lantibiotic cinnamycin and the structurally-related peptide duramycin produced by some Gram-positive bacteria were among the first toxins characterized by their specificity for PE which is widely present in animal kingdoms from bacteria to mammals. These toxins promoted their binding to PE-containing membranes by changing membrane curvature and by inducing transbilayer lipid movement. The recognition of the conical shape and negative curvature adopted by the PE species within the membrane, is important to understand how lipid-peptide interaction can occur. Three mushroom-derived proteins belonging to the aegerolysin family, pleurotolysin A2, ostreolysin and erylysin A were recently described as efficient tools to visualize the membrane distribution of CPE which is found in trace amounts in mammalian cells but in higher amounts in some developmental stages of lower eukaryotes like Trypanosoma and in invertebrates such as Drosophila. The recent development of lantibiotic-based PE-specific and aegerolysin-based CPE-specific probes is useful to visualize and specify the role of these lipids in various pathophysiological events such as cell division, apoptosis, tumor vasculature and parasite developmental stages.


Assuntos
Bacteriocinas/metabolismo , Etanolaminas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Hemolisinas/metabolismo , Peptídeos Cíclicos/metabolismo , Peptídeos/metabolismo , Fosfatidiletanolaminas/metabolismo , Animais , Bacteriocinas/química , Bacteriocinas/farmacologia , Ligação Competitiva/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Etanolaminas/química , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Proteínas Hemolisinas/química , Proteínas Hemolisinas/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Fosfatidiletanolaminas/química , Ligação Proteica/efeitos dos fármacos
13.
Mol Biol Cell ; 27(21): 3293-3304, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582390

RESUMO

Dysregulated hepatic cholesterol homeostasis with free cholesterol accumulation in the liver is relevant to the pathogenesis of nonalcoholic steatohepatitis, contributing to the chronicity of liver toxicity. Here we examined the effect of free cholesterol accumulation on the morphology and biochemical properties of lipid droplets (LDs) in cultured hepatocytes. Acute free cholesterol accumulation induced the fusion of LDs, followed by degradation of the coat protein of LDs, perilipin 2 (PLIN2; also called adipophilin or adipose differentiation-related protein), and association of apolipoprotein B 100 (ApoB 100) to LDs. The degradation of PLIN2 was inhibited by inhibitors of ubiquitination, autophagy, and protein synthesis. The results indicate that association of ApoB 100 with LDs is dependent on the activity of low-molecular weight GTP-binding protein Rab18 and highlight the role of LDs as targets of free cholesterol toxicity in hepatocytes.


Assuntos
Colesterol/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/fisiologia , Apolipoproteína B-100/metabolismo , Apolipoproteína B-100/fisiologia , Proteínas de Transporte/metabolismo , Técnicas de Cultura de Células , Colesterol/fisiologia , Retículo Endoplasmático/patologia , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipídeos/química , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Perilipina-2/metabolismo , Fosfoproteínas/metabolismo , Proteínas rab de Ligação ao GTP
14.
Toxicology ; 355-356: 21-30, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27181934

RESUMO

Previous work in our laboratory demonstrated that in-utero exposure to a mixture of the phytoestrogen Genistein (GEN), and plasticizer DEHP, induces short- and long-term alterations in testicular gene and protein expression different from individual exposures. These studies identified fetal and adult Leydig cells as sensitive targets for low dose endocrine disruptor (ED) mixtures. To further investigate the direct effects and mechanisms of toxicity of GEN and DEHP, MA-10 mouse tumor Leydig cells were exposed in-vitro to varying concentrations of GEN and MEHP, the principal bioactive metabolite of DEHP. Combined 10µM GEN+10µM MEHP had a stimulatory effect on basal progesterone production. Consistent with increased androgenicity, the mRNA of steroidogenic and cholesterol mediators Star, Cyp11a, Srb1 and Hsl, as well as upstream orphan nuclear receptors Nr2f2 and Sf1 were all significantly increased uniquely in the mixture treatment group. Insl3, a sensitive marker of Leydig endocrine disruption and cell function, was significantly decreased by combined GEN+MEHP. Lipid analysis by high-performance thin layer chromatography demonstrated the ability of combined 10µM combined GEN+MEHP, but not individual exposures, to increase levels of several neutral lipids and phospholipid classes, indicating a generalized deregulation of lipid homeostasis. Further investigation by qPCR analysis revealed a concomitant increase in cholesterol (Hmgcoa) and phospholipid (Srebp1c, Fasn) mediator mRNAs, suggesting the possible involvement of upstream LXRα agonism. These results suggest a deregulation of MA-10 Leydig function in response to a combination of GEN+MEHP. We propose a working model for GEN+MEHP doses relevant to human exposure involving LXR agonism and activation of other transcription factors. Taken more broadly, this research highlights the importance of assessing the impact of ED mixtures in multiple toxicological models across a range of environmentally relevant doses.


Assuntos
Dietilexilftalato/análogos & derivados , Disruptores Endócrinos/toxicidade , Genisteína/toxicidade , Células Intersticiais do Testículo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Cromatografia em Camada Fina , Dietilexilftalato/administração & dosagem , Dietilexilftalato/toxicidade , Relação Dose-Resposta a Droga , Disruptores Endócrinos/administração & dosagem , Genisteína/administração & dosagem , Homeostase , Células Intersticiais do Testículo/patologia , Masculino , Camundongos , Fosfolipídeos/metabolismo , Reação em Cadeia da Polimerase , Progesterona/biossíntese , Esteroides/biossíntese , Fatores de Transcrição/metabolismo
15.
Biochim Biophys Acta ; 1858(3): 576-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26498396

RESUMO

Pore-forming toxins (PFTs) represent a unique class of highly specific lipid-binding proteins. The cytotoxicity of these compounds has been overcome through crystallographic structure and mutation studies, facilitating the development of non-toxic lipid probes. As a consequence, non-toxic PFTs have been utilized as highly specific probes to visualize the diversity and dynamics of lipid nanostructures in living and fixed cells. This review is focused on the application of PFTs and their non-toxic analogs as tools to visualize sphingomyelin and ceramide phosphoethanolamine, two major phosphosphingolipids in mammalian and insect cells, respectively. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.


Assuntos
Imagem Molecular/métodos , Sondas Moleculares/química , Proteínas Citotóxicas Formadoras de Poros/química , Esfingomielinas/metabolismo , Animais , Humanos , Insetos/metabolismo
16.
FASEB J ; 29(2): 477-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25389132

RESUMO

Sphingomyelin (SM) is a major sphingolipid in mammalian cells and is reported to form specific lipid domains together with cholesterol. However, methods to examine the membrane distribution of SM are limited. We demonstrated in model membranes that fluorescent protein conjugates of 2 specific SM-binding toxins, lysenin (Lys) and equinatoxin II (EqtII), recognize different membrane distributions of SM; Lys exclusively binds clustered SM, whereas EqtII preferentially binds dispersed SM. Freeze-fracture immunoelectron microscopy showed that clustered but not dispersed SM formed lipid domains on the cell surface. Glycolipids and the membrane concentration of SM affect the SM distribution pattern on the plasma membrane. Using derivatives of Lys and EqtII as SM distribution-sensitive probes, we revealed the exclusive accumulation of SM clusters in the midbody at the time of cytokinesis. Interestingly, apical membranes of differentiated epithelial cells exhibited dispersed SM distribution, whereas SM was clustered in basolateral membranes. Clustered but not dispersed SM was absent from the cell surface of acid sphingomyelinase-deficient Niemann-Pick type A cells. These data suggest that both the SM content and membrane distribution are crucial for pathophysiological events bringing therapeutic perspective in the role of SM membrane distribution.


Assuntos
Citocinese/fisiologia , Esfingomielinas/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Polaridade Celular , Sobrevivência Celular , Chlorocebus aethiops , DNA Complementar/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Lactente , Lipossomos/metabolismo , Masculino , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Imunoeletrônica , Doença de Niemann-Pick Tipo A/genética , Proteínas Recombinantes/metabolismo
17.
Biochimie ; 107 Pt A: 43-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25241257

RESUMO

This mini-review presents recent advances in the regulation of the membrane transbilayer movement (or flip-flop) of diacylglycerol (DAG), a key intermediate in lipid metabolism and a second messenger in lipid-mediated signaling. Despite progresses in lipid biophysics and imaging, little is known about the DAG dynamics across the two leaflets of the plasma membrane in living cells. Previous model membrane studies with DAG analogs demonstrated their fast flip-flop suggesting that DAG is evenly distributed between the two leaflets of the plasma membrane. However, recent molecular dynamics simulations indicate that DAG transbilayer movement depends on the lipid environment surrounding the lipid, i.e. DAG flips more slowly across a more ordered "lipid raft-like" bilayer (enriched in sphingomyelin/cholesterol) than across a more fluid bilayer (composed of unsaturated glycerophospholipids). Furthermore using the yellow fluorescent protein-tagged C1AB domain from protein kinase C-γ (EYFP-C1AB) that selectively binds DAG, we recently proved that the sphingomyelin (SM) content in the plasma membrane outer leaflet regulates DAG transbilayer movement in Madin-Darby canine kidney cells treated with bacterial phosphatidylcholine-specific phospholipase C. The dose-dependent inhibition of DAG flip-flop by SM could be reproduced in model membranes using fluorescent short chain DAG analog. Regulation of DAG transbilayer movement by the outer leaflet SM content is expected to modify the downstream recruitment of C1-domain containing effectors, thus bringing new insights on the role of DAG dynamics in cell pathophysiology.


Assuntos
Membrana Celular/metabolismo , Diglicerídeos/metabolismo , Bicamadas Lipídicas/metabolismo , Esfingomielinas/metabolismo , Animais , Transporte Biológico , Membrana Celular/química , Diglicerídeos/química , Cães , Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas/química , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Esfingomielinas/química
18.
Semin Cell Dev Biol ; 31: 48-56, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747366

RESUMO

Lipids play an essential role in the structure of the endosomal membranes as well as in their dynamic rearrangement during the transport of internalized cargoes along the endocytic pathway. In this review, we discuss the function of endosomal lipids mainly in mammalian cells, focusing on two well-known components of the lipid rafts, sphingomyelin and cholesterol, as well as on three anionic phospholipids, phosphatidylserine, polyphosphoinositides and the atypical phospholipid, bis(monoacylglycero)phosphate/lysobisphosphatidic acid. We detail the structure, metabolism, distribution and role of these lipids in the endosome system as well as their importance in pathological conditions where modification of the endosomal membrane flow can lead to various diseases such as lipid-storage diseases, myopathies and neuropathies.


Assuntos
Endossomos/metabolismo , Lipídeos de Membrana/metabolismo , Animais , Humanos
19.
FASEB J ; 27(8): 3284-97, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23682124

RESUMO

Diacylglycerol (DAG) is a key component in lipid metabolism and signaling. Previous model membrane studies using DAG analogs suggest their rapid membrane transbilayer movement. However, little is known about the DAG distribution and dynamics in cell membranes. Using live-cell fluorescence microscopy, we monitored the transbilayer movement of DAG with the yellow fluorescent protein-tagged C1AB domain from protein kinase C-γ (EYFP-C1AB), which selectively binds DAG. When HeLa cells were treated with Bacillus cereus phospholipase C (Bc-PLC) to produce DAG on the outer leaflet of the plasma membrane, intracellularly expressed EYFP-C1AB probe accumulated at the plasma membrane, indicating the transbilayer movement of the outer leaflet DAG to the inner leaflet. This Bc-PLC-induced translocation of EYFP-C1AB probe to the plasma membrane was not observed in the sphingolipid-enriched plasma membrane of Madin-Darby canine kidney cells, but was recovered after cell treatment with sphingomyelinase or preincubation with an inhibitor of sphingolipid biosynthesis. The inhibitory effect of sphingomyelin (SM) on the transbilayer movement of DAG was reproduced in model membranes using a fluorescent short-chain DAG analog. These results demonstrate that the SM content on the outer leaflet regulates the transbilayer movement of DAG in the plasma membrane, thus providing new insights into the dynamics of DAG in cell pathophysiology.


Assuntos
Membrana Celular/metabolismo , Diglicerídeos/metabolismo , Bicamadas Lipídicas/metabolismo , Esfingomielinas/metabolismo , Animais , Bacillus cereus/enzimologia , Sítios de Ligação/genética , Transporte Biológico , Linhagem Celular , Membrana Celular/química , Clostridium perfringens/enzimologia , Cães , Membrana Eritrocítica/metabolismo , Células HeLa , Humanos , Bicamadas Lipídicas/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lipídeos de Membrana/metabolismo , Microscopia Confocal , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Esfingomielina Fosfodiesterase/metabolismo , Fosfolipases Tipo C/metabolismo
20.
J Biol Chem ; 287(29): 24397-411, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22605339

RESUMO

To identify novel inhibitors of sphingomyelin (SM) metabolism, a new and selective high throughput microscopy-based screening based on the toxicity of the SM-specific toxin, lysenin, was developed. Out of a library of 2011 natural compounds, the limonoid, 3-chloro-8ß-hydroxycarapin-3,8-hemiacetal (CHC), rendered cells resistant to lysenin by decreasing cell surface SM. CHC treatment selectively inhibited the de novo biosynthesis of SM without affecting glycolipid and glycerophospholipid biosynthesis. Pretreatment with brefeldin A abolished the limonoid-induced inhibition of SM synthesis suggesting that the transport of ceramide (Cer) from the endoplasmic reticulum to the Golgi apparatus is affected. Unlike the Cer transporter (CERT) inhibitor HPA-12, CHC did not change the transport of a fluorescent short chain Cer analog to the Golgi apparatus or the formation of fluorescent and short chain SM from the corresponding Cer. Nevertheless, CHC inhibited the conversion of de novo synthesized Cer to SM. We show that CHC specifically inhibited the CERT-mediated extraction of Cer from the endoplasmic reticulum membranes in vitro. Subsequent biochemical screening of 21 limonoids revealed that some of them, such as 8ß-hydroxycarapin-3,8-hemiacetal and gedunin, which exhibits anti-cancer activity, inhibited SM biosynthesis and CERT-mediated extraction of Cer from membranes. Model membrane studies suggest that 8ß-hydroxycarapin-3,8-hemiacetal reduced the miscibility of Cer with membrane lipids and thus induced the formation of Cer-rich membrane domains. Our study shows that certain limonoids are novel inhibitors of SM biosynthesis and suggests that some biological activities of these limonoids are related to their effect on the ceramide metabolism.


Assuntos
Ceramidas/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Limoninas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Esfingomielinas/biossíntese , Animais , Células CHO , Varredura Diferencial de Calorimetria , Cricetinae , Células HeLa , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Microscopia Confocal , Esfingolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...