Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 352(3): 469-78, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584706

RESUMO

Several studies have demonstrated a link between diabetes and the dysfunction of the inner ear. Few studies, however, have reported the signalling mechanisms involved in metabolic control in human inner ear cells. Knowledge of the expression and role of the insulin receptor and downstream signalling components in the inner ear is sparce. Our immunohistochemistry approach has shown that the insulin receptor, insulin receptor substrate 1 (IRS1), protein kinase B (PKB) and insulin-sensitive glucose transporter (GLUT4) are expressed in the sensory epithelium of the human saccule, which also exhibits expression of a calcium-sensitive cAMP/cGMP phosphodiesterase 1C (PDE1C) and the vasopressin type 2 receptor. IRS1 and PDE1C are selectively expressed in sensory epithelial hair cells, whereas the other components are expressed in sensory epithelial supporting cells or in both cell types, as judged from co-expression or non-co-expression with glial fibrillary acidic protein, a marker for supporting cells. Furthermore, IRS1 appears to be localized in association with sensory nerves, whereas GLUT4 is expressed in the peri-nuclear area of stromal cells, as is the case for aquaporin 2. Thus, the insulin receptor, insulin signalling components and selected cAMP signalling components are expressed in the human saccule. In addition to well-known mechanisms of diabetes complications, such as neuropathy and vascular lesions, the expression of these proteins in the saccule could have a role in the observed link between diabetes and balance/hearing disorders.


Assuntos
Epitélio/metabolismo , Insulina/metabolismo , Sáculo e Utrículo/metabolismo , Sensação , Transdução de Sinais , Aquaporina 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/enzimologia , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Receptores de Vasopressinas/metabolismo , Sáculo e Utrículo/citologia , Células Estromais/citologia , Células Estromais/metabolismo
2.
Front Neurol ; 2: 48, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21886636

RESUMO

OBJECTIVE: To locate components and target proteins of relevance for the cAMP and cGMP signaling networks including cAMP and cGMP phosphodiesterases (PDEs), salt-inducible kinases (SIKs), subunits of Na+, K+-ATPases, and aquaporins (AQPs) in the human saccule. METHODS: The human saccule was dissected out during the removal of vestibular schwannoma via the translabyrinthine approach and immediately fixed. Immunohistochemistry was performed using PDE, SIK, Na(+), K(+)-ATPase, and AQP antibodies. RESULTS: PDEs selective for cAMP (PDE4A, PDE4D, and PDE8A) and cGMP (PDE9A) as well a dual specificity PDE (PDE10A) were detected in the sensory epithelium of the saccule. Furthermore, AQP2, 4, and 9, SIK1 and the α-1 subunit of the Na(+), K(+)-ATPase were detected. CONCLUSION: cAMP and cGMP are important regulators of ion and water homeostasis in the inner ear. The identification of PDEs and SIK1 in the vestibular system offers new treatment targets for endolymphatic hydrops. Exactly how the PDEs are connected to SIK1 and the SIK1 substrate Na(+), K(+)-ATPase and to AQPs 2, 4, 9 remains to be elucidated. The dissection of the signaling networks utilizing these components and evaluating their roles will add new basic knowledge regarding inner ear physiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...