Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Neurodegener ; 18(1): 87, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974165

RESUMO

BACKGROUND: Progranulin (PGRN) is a lysosomal glycoprotein implicated in various neurodegenerative diseases, including frontotemporal dementia and neuronal ceroid lipofuscinosis. Over 70 mutations discovered in the GRN gene all result in reduced expression of the PGRN protein. Genetic and functional studies point toward a regulatory role for PGRN in lysosome functions. However, the detailed molecular function of PGRN within lysosomes and the impact of PGRN deficiency on lysosomes remain unclear. METHODS: We developed multifaceted proteomic techniques to characterize the dynamic lysosomal biology in living human neurons and fixed mouse brain tissues. Using lysosome proximity labeling and immuno-purification of intact lysosomes, we characterized lysosome compositions and interactome in both human induced pluripotent stem cell (iPSC)-derived glutamatergic neurons (i3Neurons) and mouse brains. Using dynamic stable isotope labeling by amino acids in cell culture (dSILAC) proteomics, we measured global protein half-lives in human i3Neurons for the first time. RESULTS: Leveraging the multi-modal proteomics and live-cell imaging techniques, we comprehensively characterized how PGRN deficiency changes the molecular and functional landscape of neuronal lysosomes. We found that PGRN loss impairs the lysosome's degradative capacity with increased levels of v-ATPase subunits on the lysosome membrane, increased hydrolases within the lysosome, altered protein regulations related to lysosomal transport, and elevated lysosomal pH. Consistent with impairments in lysosomal function, GRN-null i3Neurons and frontotemporal dementia patient-derived i3Neurons carrying GRN mutation showed pronounced alterations in protein turnover, such as cathepsins and proteins related to supramolecular polymerization and inherited neurodegenerative diseases. CONCLUSION: This study suggested PGRN as a critical regulator of lysosomal pH and degradative capacity, which influences global proteostasis in neurons. Beyond the study of progranulin deficiency, these newly developed proteomic methods in neurons and brain tissues provided useful tools and data resources for the field to study the highly dynamic neuronal lysosome biology.


Assuntos
Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Humanos , Progranulinas/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteostase , Proteômica , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo
3.
Hum Mol Genet ; 32(18): 2808-2821, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37384414

RESUMO

Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene have been identified as one of the most common genetic causes of Parkinson's disease (PD). The LRRK2 PD-associated mutations LRRK2G2019S and LRRK2R1441C, located in the kinase domain and in the ROC-COR domain, respectively, have been demonstrated to impair mitochondrial function. Here, we sought to further our understanding of mitochondrial health and mitophagy by integrating data from LRRK2R1441C rat primary cortical and human induced pluripotent stem cell-derived dopamine (iPSC-DA) neuronal cultures as models of PD. We found that LRRK2R1441C neurons exhibit decreased mitochondrial membrane potential, impaired mitochondrial function and decreased basal mitophagy levels. Mitochondrial morphology was altered in LRRK2R1441C iPSC-DA but not in cortical neuronal cultures or aged striatal tissue, indicating a cell-type-specific phenotype. Additionally, LRRK2R1441C but not LRRK2G2019S neurons demonstrated decreased levels of the mitophagy marker pS65Ub in response to mitochondrial damage, which could disrupt degradation of damaged mitochondria. This impaired mitophagy activation and mitochondrial function were not corrected by the LRRK2 inhibitor MLi-2 in LRRK2R1441C iPSC-DA neuronal cultures. Furthermore, we demonstrate LRRK2 interaction with MIRO1, a protein necessary to stabilize and to anchor mitochondria for transport, occurs at mitochondria, in a genotype-independent manner. Despite this, we found that degradation of MIRO1 was impaired in LRRK2R1441C cultures upon induced mitochondrial damage, suggesting a divergent mechanism from the LRRK2G2019S mutation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Ratos , Animais , Idoso , Doença de Parkinson/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mitofagia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Mitocôndrias/metabolismo
4.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865171

RESUMO

Progranulin (PGRN) is a lysosomal protein implicated in various neurodegenerative diseases. Over 70 mutations discovered in the GRN gene all result in reduced expression of PGRN protein. However, the detailed molecular function of PGRN within lysosomes and the impact of PGRN deficiency on lysosomal biology remain unclear. Here we leveraged multifaceted proteomic techniques to comprehensively characterize how PGRN deficiency changes the molecular and functional landscape of neuronal lysosomes. Using lysosome proximity labeling and immuno-purification of intact lysosomes, we characterized lysosome compositions and interactomes in both human induced pluripotent stem cell (iPSC)-derived glutamatergic neurons (i3Neurons) and mouse brains. Using dynamic stable isotope labeling by amino acids in cell culture (dSILAC) proteomics, we measured global protein half-lives in i3Neurons for the first time and characterized the impact of progranulin deficiency on neuronal proteostasis. Together, this study indicated that PGRN loss impairs the lysosome's degradative capacity with increased levels of v-ATPase subunits on the lysosome membrane, increased catabolic enzymes within the lysosome, elevated lysosomal pH, and pronounced alterations in neuron protein turnover. Collectively, these results suggested PGRN as a critical regulator of lysosomal pH and degradative capacity, which in turn influences global proteostasis in neurons. The multi-modal techniques developed here also provided useful data resources and tools to study the highly dynamic lysosome biology in neurons.

5.
Autophagy ; 19(2): 692-705, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35786165

RESUMO

The accumulation of toxic protein aggregates in multiple neurodegenerative diseases is associated with defects in the macroautophagy/autophagy-lysosome pathway. The amelioration of disease phenotypes across multiple models of neurodegeneration can be achieved through modulating the master regulator of lysosome function, TFEB (transcription factor EB). Using a novel multi-parameter high-throughput screen for cytoplasmic:nuclear translocation of endogenous TFEB and the related transcription factor TFE3, we screened the Published Kinase Inhibitor Set 2 (PKIS2) library as proof of principle and to identify kinase regulators of TFEB and TFE3. Given that TFEB and TFE3 are responsive to cellular stress we have established assays for cellular toxicity and lysosomal function, critical to ensuring the identification of hit compounds with only positive effects on lysosome activity. In addition to AKT inhibitors which regulate TFEB localization, we identified a series of quinazoline-derivative compounds that induced TFEB and TFE3 translocation. A novel series of structurally-related analogs was developed, and several compounds induced TFEB and TFE3 translocation at higher potency than previously screened compounds. KINOMEscan and cell-based KiNativ kinase profiling revealed high binding for the PRKD (protein kinase D) family of kinases, suggesting good selectivity for these compounds. We describe and utilize a cellular target-validation platform using CRISPRi knockdown and orthogonal PRKD inhibitors to demonstrate that the activity of these compounds is independent of PRKD inhibition. The more potent analogs induced subsequent upregulation of the CLEAR gene network and cleared pathological HTT protein in a cellular model of proteinopathy, demonstrating their potential to alleviate neurodegeneration-relevant phenotypes. Abbreviations: AD: Alzheimer disease; AK: adenylate kinase; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; HD: Huntington disease; PD: Parkinson disease; PKIS2: Published Kinase Inhibitor Set 2; PRKD: protein kinase D; TFEB: transcription factor EB.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica , Núcleo Celular/metabolismo , Lisossomos/metabolismo
6.
Trends Neurosci ; 42(12): 899-912, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31704179

RESUMO

Parkinson's disease (PD) and frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS) are insidious and incurable neurodegenerative diseases that represent a significant burden to affected individuals, caregivers, and an ageing population. Both PD and FTD/ALS are defined at post mortem by the presence of protein aggregates and the loss of specific subsets of neurons. We examine here the crucial role of lysosome dysfunction in these diseases and discuss recent evidence for converging mechanisms. This review draws upon multiple lines of evidence from genetic studies, human tissue, induced pluripotent stem cells (iPSCs), and animal models to argue that lysosomal failure is a primary mechanism of disease, rather than merely reflecting association with protein aggregate end-points. This review provides compelling rationale for targeting lysosomes in future therapeutics for both PD and FTD/ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Demência Frontotemporal/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Autofagia , Demência Frontotemporal/genética , Humanos , Lisossomos/genética , Mitocôndrias/metabolismo , Doença de Parkinson/genética
7.
J Porphyr Phthalocyanines ; 21(4-6): 354-363, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29056848

RESUMO

Syntheses of three new chlorin e6 conjugates for PDT of tumors are reported. One of the new compounds 17 is conjugated with lysine at the 131-position, but the others are mono-conjugated 14 or diconjugated 15 with the non-amino acid species ethanolamine. Cellular experiments with the three new compounds and previously synthesized non-amino acid 152-conjugates (7-10), 131-monoconjugates 14, 16, and a 131,152-diconjugate 12 are reported. In vitro cytotoxicity experiments show that the 131-conjugates are more toxic than the 152-conjugates, and the most toxic derivative (dark- and photo-toxicity) is the 131-ethylenediamine conjugate 11. The most useful PDT photosentitizers appear to be the ethanolamine derivatives, conjugated at the 152- and the 131,152-positions; these show high phototoxicity but relatively low dark toxicity compared with 11, and also the highest dark/photo cytotoxicity ratios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...