Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(19): 193603, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399738

RESUMO

In quantum logic spectroscopy (QLS), one species of trapped ion is used as a sensor to detect the state of an otherwise inaccessible ion species. This extends precision measurements to a broader class of atomic and molecular systems for applications like atomic clocks and tests of fundamental physics. Here, we develop a new technique based on a Schrödinger cat interferometer to address the problem of scaling QLS to larger ion numbers. We demonstrate the basic features of this method using various combinations of ^{25}Mg^{+} logic ions and ^{27}Al^{+} spectroscopy ions. We observe higher detection efficiency by increasing the number of ^{25}Mg^{+} ions. Applied to multiple ^{27}Al^{+}, this method will improve the stability of high-accuracy optical clocks and could enable Heisenberg-limited QLS.

2.
Phys Rev Lett ; 125(24): 243602, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412042

RESUMO

Laser decoherence limits the stability of optical clocks by broadening the observable resonance linewidths and adding noise during the dead time between clock probes. Correlation spectroscopy avoids these limitations by measuring correlated atomic transitions between two ensembles, which provides a frequency difference measurement independent of laser noise. Here, we apply this technique to perform stability measurements between two independent clocks based on the ^{1}S_{0}↔^{3}P_{0} transition in ^{27}Al^{+}. By stabilizing the dominant sources of differential phase noise between the two clocks, we observe coherence between them during synchronous Ramsey interrogations as long as 8 s at a frequency of 1.12×10^{15} Hz. The observed contrast in the correlation spectroscopy signal is consistent with the 20.6 s ^{3}P_{0} state lifetime and represents a measurement instability of (1.8±0.5)×10^{-16}/sqrt[τ/s] for averaging periods longer than the probe duration when dead time is negligible.

3.
Nature ; 545(7653): 203-207, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28492258

RESUMO

Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.

4.
Phys Rev Lett ; 117(24): 243005, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-28009196

RESUMO

We experimentally study particle exchange in a dissipative double-well potential using laser-cooled atoms in a hybrid trap. We measure the particle hopping rate as a function of barrier height, temperature, and atom number. Single-particle resolution allows us to measure rates over more than 4 orders of magnitude and distinguish the effects of loss and hopping. Deviations from the Arrhenius-law scaling at high barrier heights occur due to cold collisions between atoms within a well. By driving the system periodically, we characterize the phenomenon of stochastic resonance in the system response.

5.
Science ; 345(6195): 424-7, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25061206

RESUMO

Entanglement is the key quantum resource for improving measurement sensitivity beyond classical limits. However, the production of entanglement in mesoscopic atomic systems has been limited to squeezed states, described by Gaussian statistics. Here, we report on the creation and characterization of non-Gaussian many-body entangled states. We develop a general method to extract the Fisher information, which reveals that the quantum dynamics of a classically unstable system creates quantum states that are not spin squeezed but nevertheless entangled. The extracted Fisher information quantifies metrologically useful entanglement, which we confirm by Bayesian phase estimation with sub-shot-noise sensitivity. These methods are scalable to large particle numbers and applicable directly to other quantum systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...