Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856969

RESUMO

Immunohistochemistry (IHC) and immunofluorescence (IF) are crucial techniques for studying cardiac physiology and disease. The accuracy of these techniques is dependent on various aspects of sample preparation and processing. However, standardised protocols for sample preparation of tissues, particularly for fresh-frozen human left ventricle (LV) tissue, have yet to be established and could potentially lead to differences in staining and interpretation. Thus, this study aimed to optimise the reproducibility and quality of IF staining in fresh-frozen human LV tissue by systematically investigating crucial aspects of the sample preparation process. To achieve this, we subjected fresh-frozen human LV tissue to different fixation protocols, primary antibody incubation temperatures, antibody penetration reagents, and fluorescent probes. We found that neutral buffered formalin fixation reduced image artefacts and improved antibody specificity compared to both methanol and acetone fixation. Additionally, incubating primary antibodies at 37°C for 3 h improved fluorescence intensity compared to the commonly practised 4°C overnight incubation. Furthermore, we found that DeepLabel, an antibody penetration reagent, and smaller probes, such as fragmented antibodies and Affimers, improved the visualisation depth of cardiac structures. DeepLabel also improved antibody penetration in CUBIC cleared thick LV tissue fragments. Thus, our data underscores the importance of standardised protocols in IF staining and provides various means of improving staining quality. In addition to contributing to cardiac research by providing methodologies for IF, the findings and processes presented herein also establish a framework by which staining of other tissues may be optimised.

2.
Sci Adv ; 10(25): eadk8501, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905342

RESUMO

Single-cell technology has allowed researchers to probe tissue complexity and dynamics at unprecedented depth in health and disease. However, the generation of high-dimensionality single-cell atlases and virtual three-dimensional tissues requires integrated reference maps that harmonize disparate experimental designs, analytical pipelines, and taxonomies. Here, we present a comprehensive single-cell transcriptome integration map of cardiac fibrosis, which underpins pathophysiology in most cardiovascular diseases. Our findings reveal similarity between cardiac fibroblast (CF) identities and dynamics in ischemic versus pressure overload models of cardiomyopathy. We also describe timelines for commitment of activated CFs to proliferation and myofibrogenesis, profibrotic and antifibrotic polarization of myofibroblasts and matrifibrocytes, and CF conservation across mouse and human healthy and diseased hearts. These insights have the potential to inform knowledge-based therapies.


Assuntos
Fibroblastos , Fibrose , Análise de Célula Única , Transcriptoma , Animais , Análise de Célula Única/métodos , Humanos , Fibroblastos/metabolismo , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Perfilação da Expressão Gênica
3.
Sci Rep ; 13(1): 14995, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696945

RESUMO

Despite the high prevalence of heart failure in the western world, there are few effective treatments. Fibulin-3 is a protein involved in extracellular matrix (ECM) structural integrity, however its role in the heart is unknown. We have demonstrated, using single cell RNA-seq, that fibulin-3 was highly expressed in quiescent murine cardiac fibroblasts, with expression highest prior to injury and late post-infarct (from ~ day-28 to week-8). In humans, fibulin-3 was upregulated in left ventricular tissue and plasma of heart failure patients. Fibulin-3 knockout (Efemp1-/-) and wildtype mice were subjected to experimental myocardial infarction. Fibulin-3 deletion resulted in significantly higher rate of cardiac rupture days 3-6 post-infarct, indicating a weak and poorly formed scar, with severe ventricular remodelling in surviving mice at day-28 post-infarct. Fibulin-3 knockout mice demonstrated less collagen deposition at day-3 post-infarct, with abnormal collagen fibre-alignment. RNA-seq on day-3 infarct tissue revealed upregulation of ECM degradation and inflammatory genes, but downregulation of ECM assembly/structure/organisation genes in fibulin-3 knockout mice. GSEA pathway analysis showed enrichment of inflammatory pathways and a depletion of ECM organisation pathways. Fibulin-3 originates from cardiac fibroblasts, is upregulated in human heart failure, and is necessary for correct ECM organisation/structural integrity of fibrotic tissue to prevent cardiac rupture post-infarct.


Assuntos
Proteínas da Matriz Extracelular , Insuficiência Cardíaca , Ruptura Cardíaca , Infarto do Miocárdio , Animais , Humanos , Camundongos , Coração , Insuficiência Cardíaca/genética , Ruptura Cardíaca/genética , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Proteínas da Matriz Extracelular/genética
4.
JACC Basic Transl Sci ; 8(6): 658-674, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37426530

RESUMO

After myocardial infarction (MI), fibroblasts progress from proliferative to myofibroblast states, resulting in fibrosis. Platelet-derived growth factors (PDGFs) are reported to induce fibroblast proliferation, myofibroblast differentiation, and fibrosis. However, we have previously shown that PDGFs improve heart function post-MI without increasing fibrosis. We treated human cardiac fibroblasts with PDGF isoforms then performed RNA sequencing to show that PDGFs reduced cardiac fibroblasts myofibroblast differentiation and downregulated cell cycle pathways. Using mouse/pig MI models, we reveal that PDGF-AB infusion increases cell-cell interactions, reduces myofibroblast differentiation, does not affect proliferation, and accelerates scar formation. RNA sequencing of pig hearts after MI showed that PDGF-AB reduces inflammatory cytokines and alters both transcript variants and long noncoding RNA expression in cell cycle pathways. We propose that PDGF-AB could be used therapeutically to manipulate post-MI scar maturation with subsequent beneficial effects on cardiac function.

5.
Circ Res ; 132(1): 72-86, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36453283

RESUMO

BACKGROUND: Myocardial infarction (MI) is among the leading causes of death worldwide. Following MI, necrotic cardiomyocytes are replaced by a stiff collagen-rich scar. Compared to collagen, the extracellular matrix protein elastin has high elasticity and may have more favorable properties within the cardiac scar. We sought to improve post-MI healing by introducing tropoelastin, the soluble subunit of elastin, to alter scar mechanics early after MI. METHODS AND RESULTS: We developed an ultrasound-guided direct intramyocardial injection method to administer tropoelastin directly into the left ventricular anterior wall of rats subjected to induced MI. Experimental groups included shams and infarcted rats injected with either PBS vehicle control or tropoelastin. Compared to vehicle treated controls, echocardiography assessments showed tropoelastin significantly improved left ventricular ejection fraction (64.7±4.4% versus 46.0±3.1% control) and reduced left ventricular dyssynchrony (11.4±3.5 ms versus 31.1±5.8 ms control) 28 days post-MI. Additionally, tropoelastin reduced post-MI scar size (8.9±1.5% versus 20.9±2.7% control) and increased scar elastin (22±5.8% versus 6.2±1.5% control) as determined by histological assessments. RNA sequencing (RNAseq) analyses of rat infarcts showed that tropoelastin injection increased genes associated with elastic fiber formation 7 days post-MI and reduced genes associated with immune response 11 days post-MI. To show translational relevance, we performed immunohistochemical analyses on human ischemic heart disease cardiac samples and showed an increase in tropoelastin within fibrotic areas. Using RNA-seq we also demonstrated the tropoelastin gene ELN is upregulated in human ischemic heart disease and during human cardiac fibroblast-myofibroblast differentiation. Furthermore, we showed by immunocytochemistry that human cardiac fibroblast synthesize increased elastin in direct response to tropoelastin treatment. CONCLUSIONS: We demonstrate for the first time that purified human tropoelastin can significantly repair the infarcted heart in a rodent model of MI and that human cardiac fibroblast synthesize elastin. Since human cardiac fibroblasts are primarily responsible for post-MI scar synthesis, our findings suggest exciting future clinical translation options designed to therapeutically manipulate this synthesis.


Assuntos
Infarto do Miocárdio , Miocárdio , Humanos , Ratos , Animais , Miocárdio/metabolismo , Elastina/metabolismo , Tropoelastina/genética , Tropoelastina/metabolismo , Cicatriz , Volume Sistólico , Função Ventricular Esquerda , Miócitos Cardíacos/metabolismo , Colágeno/metabolismo , Remodelação Ventricular
6.
Int J Cardiol ; 341: 24-30, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265313

RESUMO

BACKGROUND: Novel therapies that can limit or reverse damage caused by myocardial infarction (MI) could ease the increasing burden of heart failure. In this regard Platelet Derived Growth Factor (PDGF) has been previously shown to contribute to cardiac repair after MI. Here, we use a rodent model of MI and recombinant adeno-associated virus 9 (rAAV9)-mediated gene transfer to overexpress Pdgf-a in the injured heart and assess its therapeutic potential. METHODS AND RESULTS: Sprague Dawley rats underwent temporary occlusion of the left anterior descending coronary artery, followed immediately by systemic delivery of 1 × 10^11 vector genomes of either rAAV9 Pdgf-a or rAAV9 Empty vector (control). At day 28 post-MI echocardiography showed significantly improved left ventricular (LV) function (fractional shortening) after rAAV9 Pdgf-a (0.394 ± 0.019%) treatment vs control (0.304 ± 0.018%). Immunohistochemical analysis demonstrated significantly increased capillary and arteriolar density in the infarct border zone of rAAV9 Pdgf-a treated hearts together with a significant reduction in infarct scar size (rAAV9 Pdgf-a 6.09 ± 0.94% vs Empty 12.45 ± 0.92%). Western blot and qPCR analyses confirmed overexpression of PDGF-A and showed upregulation of smooth muscle alpha actin (Acta2), collagen type III alpha 1 (Col3a1) and lysyl oxidase (Lox) genes in rAAV9 Pdgf-a treated infarcts. CONCLUSION: Overexpression of Pdgf-a in the post-MI heart can modulate scar composition and improve LV function. Our study highlights the potential of rAAV gene transfer of Pdgf-a as a cardio-reparative therapy.


Assuntos
Cicatriz , Infarto do Miocárdio , Animais , Modelos Animais de Doenças , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miocárdio/patologia , Fator de Crescimento Derivado de Plaquetas/genética , Ratos , Ratos Sprague-Dawley , Função Ventricular Esquerda , Remodelação Ventricular
7.
Clin Ther ; 42(10): 1923-1943, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33010930

RESUMO

PURPOSE: Despite modern reperfusion and pharmacologic therapies, myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. Therefore, the development of further therapeutics affecting post-MI recovery poses significant benefits. This review focuses on the post-MI immune response and immunomodulatory therapeutics that could improve the wound-healing response. METHODS: This narrative review used OVID versions of MEDLINE and EMBASE searching for clinical therapeutics targeting the immune system during MI. Preclinical models and clinical trials were included. Additional studies were sourced from the reference lists of relevant articles and other personal files. FINDINGS: After MI, cardiomyocytes are starved of oxygen and undergo cell death via coagulative necrosis. This process activates the immune system and a multifaceted wound-healing response, comprising a number of complex and overlapping phases. Overactivation or persistence of one or more of these phases can have potentially lethal implications. This review describes the immune response post-MI and any adverse events that can occur during these different phases. Second, we describe immunomodulatory therapies that attempt to target these immune cell aberrations by mitigating or diminishing their effects on the wound-healing response. Also discussed are adult stem/progenitor cell therapies, exosomes, and regulatory T cells, and their immunomodulatory effects in the post-MI setting. IMPLICATIONS: An updated understanding into the importance of various inflammatory cell phenotypes, coupled with new technologies, may hold promise for a new era of immunomodulatory therapeutics. The implications of such therapies could dramatically improve patients' quality of life post-MI and reduce the incidence of progressive heart failure.


Assuntos
Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos , Cicatrização/imunologia , Animais , Morte Celular , Exossomos/metabolismo , Humanos , Imunidade , Qualidade de Vida
8.
Sci Transl Med ; 12(524)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31894101

RESUMO

Therapies that target scar formation after myocardial infarction (MI) could prevent ensuing heart failure or death from ventricular arrhythmias. We have previously shown that recombinant human platelet-derived growth factor-AB (rhPDGF-AB) improves cardiac function in a rodent model of MI. To progress clinical translation, we evaluated rhPDGF-AB treatment in a clinically relevant porcine model of myocardial ischemia-reperfusion. Thirty-six pigs were randomized to sham procedure or balloon occlusion of the proximal left anterior descending coronary artery with 7-day intravenous infusion of rhPDGF-AB or vehicle. One month after MI, rhPDGF-AB improved survival by 40% compared with vehicle, and cardiac magnetic resonance imaging showed left ventricular (LV) ejection fraction improved by 11.5%, driven by reduced LV end-systolic volumes. Pressure volume loop analyses revealed improved myocardial contractility and energetics after rhPDGF-AB treatment with minimal effect on ventricular compliance. rhPDGF-AB enhanced angiogenesis and increased scar anisotropy (high fiber alignment) without affecting overall scar size or stiffness. rhPDGF-AB reduced inducible ventricular tachycardia by decreasing heterogeneity of the ventricular scar that provides a substrate for reentrant circuits. In summary, we demonstrated that rhPDGF-AB promotes post-MI cardiac wound repair by altering the mechanics of the infarct scar, resulting in robust cardiac functional improvement, decreased ventricular arrhythmias, and improved survival. Our findings suggest a strong translational potential for rhPDGF-AB as an adjunct to current MI treatment and possibly to modulate scar in other organs.


Assuntos
Cicatriz/patologia , Infarto do Miocárdio/patologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Arteríolas/efeitos dos fármacos , Arteríolas/patologia , Arteríolas/fisiopatologia , Cicatriz/complicações , Cicatriz/tratamento farmacológico , Cicatriz/fisiopatologia , Colágeno/metabolismo , Fibrose , Testes de Função Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Proteínas Recombinantes/farmacologia , Análise de Sobrevida , Suínos , Cicatrização/efeitos dos fármacos
9.
Sci Rep ; 8(1): 12658, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139956

RESUMO

Breast cancers are highly heterogeneous and their metastatic potential and response to therapeutic drugs is difficult to predict. A tool that could accurately gauge tumour invasiveness and drug response would provide a valuable addition to the oncologist's arsenal. We have developed a 3-dimensional (3D) culture model that recapitulates the stromal environment of breast cancers by generating anisotropic (directional) collagen scaffolds seeded with adipocytes and culturing tumour fragments therein. Analysis of tumour cell invasion in the presence of various therapeutic drugs, by immunofluorescence microscopy coupled with an optical clearing technique, demonstrated the utility of this approach in determining both the rate and capacity of tumour cells to migrate through the stroma while shedding light also on the mode of migration. Furthermore, the response of different murine mammary tumour types to chemotherapeutic drugs could be readily quantified.


Assuntos
Adipócitos/citologia , Movimento Celular/fisiologia , Colágeno/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células 3T3-L1 , Animais , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Microscopia de Fluorescência
10.
Tissue Eng Part A ; 24(17-18): 1309-1319, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29652604

RESUMO

Adipocytes are one of the major stromal cell components of the human breast. These cells play a key role in the development of the gland and are implicated in breast tumorigenesis. Frequently, directional stromal collagen I fibers are found surrounding aggressive breast tumors. These fibers enhance breast cancer cell migration and are associated with poor patient prognosis. We sought to recapitulate these stromal components in vitro to provide a three-dimensional (3D) model comprising human adipose tissue and anisotropic collagen fibers. We developed a human mesenchymal stem cell (hMSC) cell line capable of undergoing differentiation into mature adipocytes by immortalizing hMSCs, isolated from breast reduction mammoplasties, through retroviral transduction. These immortalized hMSCs were seeded in engineered collagen I scaffolds with directional internal architecture, and adipogenesis was chemically induced, resulting in human adipose tissue being synthesized in vitro in an architectural structure associated with breast tumorigenesis. Subsequently, fluorescently labeled cells from an established breast cancer cell line were seeded into this model, cocultured for 7 days and imaged using multiphoton microscopy. Enhanced breast cancer cell migration was observed in the adipose-containing model over empty scaffold controls, demonstrating an adipocyte-mediated influence on breast cancer cell migration. Thus, this 3D in vitro model recapitulates the migratory effects of adipocytes observed on breast cancer cells and suggests that it could have utility with fresh breast tumor biopsies as an assay for cancer therapeutic efficacy in personalized medicine strategies.


Assuntos
Tecido Adiposo/metabolismo , Neoplasias da Mama/metabolismo , Movimento Celular , Colágeno Tipo I/química , Modelos Biológicos , Engenharia Tecidual , Alicerces Teciduais/química , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/patologia , Neoplasias da Mama/patologia , Linhagem Celular Transformada , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Células Tumorais Cultivadas
11.
Biomaterials ; 114: 34-43, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838472

RESUMO

Cancer is characterized by cell heterogeneity and the development of 3D in vitro assays that can distinguish more invasive or migratory phenotypes could enhance diagnosis or drug discovery. 3D collagen scaffolds have been used to develop analogues of complex tissues in vitro and are suited to routine biochemical and immunological assays. We sought to increase 3D model tractability and modulate the migration rate of seeded cells using an ice-templating technique to create either directional/anisotropic or non-directional/isotropic porous architectures within cross-linked collagen scaffolds. Anisotropic scaffolds supported the enhanced migration of an invasive breast cancer cell line MDA-MB-231 with an altered spatial distribution of proliferative cells in contrast to invasive MDA-MB-468 and non-invasive MCF-7 cells lines. In addition, MDA-MB-468 showed increased migration upon epithelial-to-mesenchymal transition (EMT) in anisotropic scaffolds. The provision of controlled architecture in this system may act both to increase assay robustness and as a tuneable parameter to capture detection of a migrated population within a set time, with consequences for primary tumour migration analysis. The separation of invasive clones from a cancer biomass with in vitro platforms could enhance drug development and diagnosis testing by contributing assay metrics including migration rate, as well as modelling cell-cell and cell-matrix interaction in a system compatible with routine histopathological testing.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Movimento Celular , Colágeno/química , Impressão Tridimensional , Análise Serial de Tecidos/instrumentação , Alicerces Teciduais , Materiais Biomiméticos/síntese química , Adesão Celular , Linhagem Celular Tumoral , Desenho de Equipamento , Matriz Extracelular/química , Humanos , Células MCF-7 , Engenharia Tecidual/instrumentação
12.
Mol Pharm ; 11(7): 1971-81, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24766393

RESUMO

Breast cancer is a complex disease with many distinct subtypes being recognized on the basis of histological features and molecular signatures. It is difficult to predict how cancers will respond to therapy, which results in many women receiving unnecessary or inappropriate treatment. Advances in materials science and tissue engineering are leading the development of complex in vitro 3D breast tissue models that will increase our understanding of normal development and tumorigenic mechanisms. Ultimately, platforms that support primary tissue culture could readily be adapted to form high-throughput drug screening tools for personalized medicine. This review will summarize the control of mammary gland phenotype within in vitro 3D environments, in the context of a detailed analysis of mammary gland development and stem and progenitor cell controlled tumorigenesis.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/patologia , Animais , Transformação Celular Neoplásica/patologia , Feminino , Humanos , Técnicas In Vitro/métodos , Modelos Biológicos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...