Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Vaccin Immunother ; 19(3): 2281733, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38012018

RESUMO

Nucleic acid vaccines are designed based on genetic sequences (DNA or mRNA) of a target antigen to be expressed in vivo to drive a host immune response. In response to the COVID-19 pandemic, mRNA and DNA vaccines based on the SARS-CoV-2 Spike antigen were developed. Surprisingly, head-to-head characterizations of the immune responses elicited by each vaccine type has not been performed to date. Here, we have employed a range of preclinical animal models including the hamster, guinea pig, rabbit, and mouse to compare and delineate the immune response raised by DNA, administered intradermally (ID) with electroporation (EP) and mRNA vaccines (BNT162b2 or mRNA-1273), administered intramuscularly (IM), expressing the SARS-CoV-2 WT spike antigen. The results revealed clear differences in the quality and magnitude of the immune response between the two vaccine platforms. The DNA vaccine immune response was characterized by strong T cell responses, while the mRNA vaccine elicited robust humoral responses. The results may assist in guiding the disease target each vaccine type may be best matched against and suggest mechanisms to further enhance the breadth of each platform's immune response.


Assuntos
COVID-19 , Vacinas de DNA , Cricetinae , Animais , Cobaias , Humanos , Camundongos , Coelhos , Vacina BNT162 , Vacinas contra COVID-19 , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2 , DNA , Modelos Animais , RNA Mensageiro , Imunidade , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética
2.
Sci Rep ; 12(1): 14313, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995959

RESUMO

Novel approaches for malaria prophylaxis remain important. Synthetic DNA-encoded monoclonal antibodies (DMAbs) are a promising approach to generate rapid, direct in vivo host-generated mAbs with potential benefits in production simplicity and distribution coupled with genetic engineering. Here, we explore this approach in a malaria challenge model. We engineered germline-reverted DMAbs based on human mAb clones CIS43, 317, and L9 which target a junctional epitope, major repeat, and minor repeat of the Plasmodium falciparum circumsporozoite protein (CSP) respectively. DMAb variants were encoded into a plasmid vector backbone and their expression and binding profiles were characterized. We demonstrate long-term serological expression of DMAb constructs resulting in in vivo efficacy of CIS43 GL and 317 GL in a rigorous mosquito bite mouse challenge model. Additionally, we engineered an Fc modified variant of CIS43 and L9-based DMAbs to ablate binding to C1q to test the impact of complement-dependent Fc function on challenge outcomes. Complement knockout variant DMAbs demonstrated similar protection to that of WT Fc DMAbs supporting the notion that direct binding to the parasite is sufficient for the protection observed. Further investigation of DMAbs for malaria prophylaxis appears of importance.


Assuntos
Anticorpos Monoclonais , Vacinas Antimaláricas , Malária Falciparum , Animais , Anticorpos Antiprotozoários , DNA , Modelos Animais de Doenças , Humanos , Vacinas Antimaláricas/genética , Malária Falciparum/prevenção & controle , Camundongos , Plasmodium falciparum , Proteínas de Protozoários
3.
Cell Rep Med ; 3(7): 100693, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35839767

RESUMO

The global coronavirus disease 2019 (COVID-19) pandemic has claimed more than 5 million lives. Emerging variants of concern (VOCs) continually challenge viral control. Directing vaccine-induced humoral and cell-mediated responses to mucosal surfaces may enhance vaccine efficacy. Here we investigate the immunogenicity and protective efficacy of optimized synthetic DNA plasmids encoding wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (pS) co-formulated with the plasmid-encoded mucosal chemokine cutaneous T cell-attracting chemokine (pCTACK; CCL27). pCTACK-co-immunized animals exhibit increased spike-specific antibodies at the mucosal surface and increased frequencies of interferon gamma (IFNγ)+ CD8+ T cells in the respiratory mucosa. pCTACK co-immunization confers 100% protection from heterologous Delta VOC challenge. This study shows that mucosal chemokine adjuvants can direct vaccine-induced responses to specific immunological sites and have significant effects on heterologous challenge. Further study of this unique chemokine-adjuvanted vaccine approach in the context of SARS-CoV-2 vaccines is likely important.


Assuntos
COVID-19 , Vacinas Virais , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Quimiocinas , Humanos , SARS-CoV-2/genética , Vacinas Virais/genética
4.
Vaccine ; 40(21): 2960-2969, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35428500

RESUMO

The enhanced transmissibility and immune evasion associated with emerging SARS-CoV-2 variants demands the development of next-generation vaccines capable of inducing superior protection amid a shifting pandemic landscape. Since a portion of the global population harbors some level of immunity from vaccines based on the original Wuhan-Hu-1 SARS-CoV-2 sequence or natural infection, an important question going forward is whether this immunity can be boosted by next-generation vaccines that target emerging variants while simultaneously maintaining long-term protection against existing strains. Here, we evaluated the immunogenicity of INO-4800, our synthetic DNA vaccine candidate for COVID-19 currently in clinical evaluation, and INO-4802, a next-generation DNA vaccine designed to broadly target emerging SARS-CoV-2 variants, as booster vaccines in nonhuman primates. Rhesus macaques primed over one year prior with the first-generation INO-4800 vaccine were boosted with either INO-4800 or INO-4802 in homologous or heterologous prime-boost regimens. Both boosting schedules led to an expansion of T cells and antibody responses which were characterized by improved neutralizing and ACE2 blocking activity across wild-type SARS-CoV-2 as well as multiple variants of concern. These data illustrate the durability of immunity following vaccination with INO-4800 and additionally support the use of either INO-4800 or INO-4802 in prime-boost regimens.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Animais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Vacinação
5.
Nat Commun ; 13(1): 695, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121758

RESUMO

HIV Envelope (Env) is the main vaccine target for induction of neutralizing antibodies. Stabilizing Env into native-like trimer (NLT) conformations is required for recombinant protein immunogens to induce autologous neutralizing antibodies(nAbs) against difficult to neutralize HIV strains (tier-2) in rabbits and non-human primates. Immunizations of mice with NLTs have generally failed to induce tier-2 nAbs. Here, we show that DNA-encoded NLTs fold properly in vivo and induce autologous tier-2 nAbs in mice. DNA-encoded NLTs also uniquely induce both CD4 + and CD8 + T-cell responses as compared to corresponding protein immunizations. Murine neutralizing antibodies are identified with an advanced sequencing technology. The structure of an Env-Ab (C05) complex, as determined by cryo-EM, identifies a previously undescribed neutralizing Env C3/V5 epitope. Beyond potential functional immunity gains, DNA vaccines permit in vivo folding of structured antigens and provide significant cost and speed advantages for enabling rapid evaluation of new HIV vaccines.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas de DNA/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Anticorpos Neutralizantes/ultraestrutura , Antígenos Virais/imunologia , Linhagem Celular Tumoral , Microscopia Crioeletrônica , ELISPOT , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/ultraestrutura , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
6.
Hum Vaccin Immunother ; 18(1): 2016201, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061975

RESUMO

Genetic optimization of Nucleic Acid immunogens is important for potentially improving their immune potency. A COVID-19 DNA vaccine is in phase III clinical trial which is based on a promising highly developable technology platform. Here, we show optimization in mice generating a pGX-9501 DNA vaccine encoding full-length spike protein, which results in induction of potent humoral and cellular immune responses, including neutralizing antibodies, that block hACE2-RBD binding of live CoV2 virus in vitro. Optimization resulted in improved induction of cellular immunity by pGX-9501 as demonstrated by increased IFN-γ expression in both CD8+ and CD4 + T cells and this was associated with more robust antiviral CTL responses compared to unoptimized constructs. Vaccination with pGX-9501 induced subsequent protection against virus challenge in a rigorous hACE2 transgenic mouse model. Overall, pGX-9501 is a promising optimized COVID-19 DNA vaccine candidate inducing humoral and cellular immunity contributing to the vaccine's protective effects.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Sequência de Bases , COVID-19/prevenção & controle , Camundongos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
7.
J Infect Dis ; 225(11): 1923-1932, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35079784

RESUMO

BACKGROUND: Additional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines that are safe and effective as primary vaccines and boosters remain urgently needed to combat the coronavirus disease 2019 (COVID-19) pandemic. We describe safety and durability of immune responses following 2 primary doses and a homologous booster dose of an investigational DNA vaccine (INO-4800) targeting full-length spike antigen. METHODS: Three dosage strengths of INO-4800 (0.5 mg, 1.0 mg, and 2.0 mg) were evaluated in 120 age-stratified healthy adults. Intradermal injection of INO-4800 followed by electroporation at 0 and 4 weeks preceded an optional booster 6-10.5 months after the second dose. RESULTS: INO-4800 appeared well tolerated with no treatment-related serious adverse events. Most adverse events were mild and did not increase in frequency with age and subsequent dosing. A durable antibody response was observed 6 months following the second dose; a homologous booster dose significantly increased immune responses. Cytokine-producing T cells and activated CD8+ T cells with lytic potential were significantly increased in the 2.0-mg dose group. CONCLUSIONS: INO-4800 was well tolerated in a 2-dose primary series and homologous booster in all adults, including elderly participants. These results support further development of INO-4800 for use as primary vaccine and booster. CLINICAL TRIALS REGISTRATION: NCT04336410.


Assuntos
COVID-19 , Vacinas de DNA , Adulto , Idoso , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunogenicidade da Vacina , SARS-CoV-2 , Vacinação/efeitos adversos , Vacinas de DNA/efeitos adversos
8.
Cell Rep ; 38(5): 110318, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35090597

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines. Utilizing computational modeling and in vitro screening, we have incorporated glycans into the receptor-binding domain (RBD) and assessed antigenic profiles. We demonstrate that glycan-coated RBD immunogens elicit stronger neutralizing antibodies and have engineered seven multivalent configurations. Advanced DNA delivery of engineered nanoparticle vaccines rapidly elicits potent neutralizing antibodies in guinea pigs, hamsters, and multiple mouse models, including human ACE2 and human antibody repertoire transgenics. RBD nanoparticles induce high levels of cross-neutralizing antibodies against variants of concern with durable titers beyond 6 months. Single, low-dose immunization protects against a lethal SARS-CoV-2 challenge. Single-dose coronavirus vaccines via DNA-launched nanoparticles provide a platform for rapid clinical translation of potent and durable coronavirus vaccines.


Assuntos
Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Nanopartículas/administração & dosagem , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Cricetinae , Epitopos , Cobaias , Imunogenicidade da Vacina , Camundongos , Nanopartículas/química , Vacinas Baseadas em Ácido Nucleico/administração & dosagem , Vacinas Baseadas em Ácido Nucleico/química , Vacinas Baseadas em Ácido Nucleico/genética , Vacinas Baseadas em Ácido Nucleico/imunologia , Polissacarídeos/química , Polissacarídeos/genética , Polissacarídeos/imunologia , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Potência de Vacina
9.
Cell Rep Med ; 2(10): 100420, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34604818

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Pulmão/virologia , Linfócitos T/imunologia , Animais , Anticorpos Neutralizantes/sangue , Vacinas contra COVID-19/uso terapêutico , Feminino , Injeções Intradérmicas , Macaca mulatta , Masculino , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/uso terapêutico , Carga Viral
10.
NPJ Vaccines ; 6(1): 121, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650089

RESUMO

Global surveillance has identified emerging SARS-CoV-2 variants of concern (VOC) associated with broadened host specificity, pathogenicity, and immune evasion to vaccine-induced immunity. Here we compared humoral and cellular responses against SARS-CoV-2 VOC in subjects immunized with the DNA vaccine, INO-4800. INO-4800 vaccination induced neutralizing antibodies against all variants tested, with reduced levels detected against B.1.351. IFNγ T cell responses were fully maintained against all variants tested.

11.
ACS Pharmacol Transl Sci ; 4(4): 1349-1361, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34396059

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by the newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the highly contagious nature of SARS-CoV-2, it has infected more than 137 million individuals and caused more than 2.9 million deaths globally as of April 13, 2021. There is an urgent need to develop effective novel therapeutic strategies to treat or prevent this infection. Toward this goal, we focused on the development of monoclonal antibodies (mAbs) directed against the SARS-CoV-2 spike glycoprotein (SARS-CoV-2 Spike) present on the surface of virus particles as well as virus-infected cells. We isolated anti-SARS-CoV-2 Spike mAbs from animals immunized with a DNA vaccine. We then selected a highly potent set of mAbs against SARS-CoV-2 Spike protein and evaluated each candidate for their expression, target binding affinity, and neutralization potential using complementary ACE2-blocking and pseudovirus neutralization assays. We identified a total of 10 antibodies, which specifically and strongly bound to SARS-CoV-2 Spike, blocked the receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) interaction, and neutralized SARS-CoV-2. Furthermore, the glycomic profile of the antibodies suggested that they have high Fc-mediated effector functions. These antibodies should be further investigated for elucidating the neutralizing epitopes on Spike for the design of next-generation vaccines and for their potential in diagnostic as well as therapeutic utilities against SARS-CoV-2.

12.
Vaccine ; 39(34): 4885-4894, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34253420

RESUMO

Safe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we assessed the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated. Vaccination induced both binding and neutralizing antibodies, along with IFN-γ-producing T cells against SARS-CoV-2. Upon administration of a high viral dose (5 × 106 pfu) via the intranasal and intratracheal routes we observed significantly reduced virus load in the lung and throat, in the vaccinated animals compared to controls. 2 doses of INO-4800 was associated with more robust vaccine-induced immune responses and improved viral protection. Importantly, histopathological examination of lung tissue provided no indication of vaccine-enhanced disease following SARS-CoV-2 challenge in INO-4800 immunized animals. This vaccine candidate is currently under clinical evaluation as a 2 dose regimen.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Macaca mulatta , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
13.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34230114

RESUMO

BACKGROUND: Human telomerase reverse transcriptase (hTERT) is frequently classified as a 'universal' tumor associated antigen due to its expression in a vast number of cancers. We evaluated plasmid DNA-encoded hTERT as an immunotherapy across nine cancer types. METHODS: A phase 1 clinical trial was conducted in adult patients with no evidence of disease following definitive surgery and standard therapy, who were at high risk of relapse. Plasmid DNA encoding one of two hTERT variants (INO-1400 or INO-1401) with or without plasmid DNA encoding interleukin 12 (IL-12) (INO-9012) was delivered intramuscularly concurrent with the application of the CELLECTRA constant-current electroporation device 4 times across 12 weeks. Safety assessments and immune monitoring against native (germline, non-mutated, non-plasmid matched) hTERT antigen were performed. The largest cohort of patients enrolled had pancreatic cancer, allowing for additional targeted assessments for this tumor type. RESULTS: Of the 93 enrolled patients who received at least one dose, 88 had at least one adverse event; the majority were grade 1 or 2, related to injection site. At 18 months, 54.8% (51/93) patients were disease-free, with median disease-free survival (DFS) not reached by end of study. For patients with pancreatic cancer, the median DFS was 9 months, with 41.4% of these patients remaining disease-free at 18 months. hTERT immunotherapy induced a de novo cellular immune response or enhanced pre-existing cellular responses to native hTERT in 96% (88/92) of patients with various cancer types. Treatment with INO-1400/INO-1401±INO-9012 drove hTERT-specific IFN-γ production, generated hTERT-specific CD4+ and CD8+ T cells expressing the activation marker CD38, and induced hTERT-specific activated CD8 +CTLs as defined by cells expressing perforin and granzymes. The addition of plasmid IL-12 adjuvant elicited higher magnitudes of cellular responses including IFN-γ production, activated CD4+ and CD8+ T cells, and activated CD8+CTLs. In a subset analysis of pancreatic cancer patients, the presence of immunotherapy-induced activated CD8+ T cells expressing PD-1, granzymes and perforin correlated with survival. CONCLUSIONS: Plasmid DNA-encoded hTERT/IL-12 DNA immunotherapy was well-tolerated, immune responses were noted across all tumor types, and a specific CD8+ phenotype increased by the immunotherapy was significantly correlated with survival in patients with pancreatic cancer.


Assuntos
DNA/genética , Imunoterapia/métodos , Interleucina-12/metabolismo , Neoplasias/genética , Plasmídeos/metabolismo , Telomerase/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33886507

RESUMO

Emerging coronaviruses from zoonotic reservoirs, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been associated with human-to-human transmission and significant morbidity and mortality. Here, we study both intradermal and intramuscular 2-dose delivery regimens of an advanced synthetic DNA vaccine candidate encoding a full-length MERS-CoV spike (S) protein, which induced potent binding and neutralizing antibodies as well as cellular immune responses in rhesus macaques. In a MERS-CoV challenge, all immunized rhesus macaques exhibited reduced clinical symptoms, lowered viral lung load, and decreased severity of pathological signs of disease compared with controls. Intradermal vaccination was dose sparing and more effective in this model at protecting animals from disease. The data support the further study of this vaccine for preventing MERS-CoV infection and transmission, including investigation of such vaccines and simplified delivery routes against emerging coronaviruses.


Assuntos
Infecções por Coronavirus/veterinária , Macaca mulatta/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas de DNA/uso terapêutico , Vacinas Virais/uso terapêutico , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Imunogenicidade da Vacina , Injeções Intradérmicas , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
15.
Genes Cancer ; 12: 51-64, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33884106

RESUMO

Prostate cancer is a prevalent cancer in men and consists of both indolent and aggressive phenotypes. While active surveillance is recommended for the former, current treatments for the latter include surgery, radiation, chemo and hormonal therapy. It has been observed that the recurrence in the treated patients is high and results in castration resistant prostate cancer for which treatment options are limited. This scenario has prompted us to consider immunotherapy with synthetic DNA vaccines, as this approach can generate antigen-specific tumor-killing immune cells. Given the multifocal and heterogeneous nature of prostate cancer, we hypothesized that synthetic DNA vaccines targeting different prostate specific antigens are likely to induce broader and improved immunity who are at high risk as well as advanced clinical stage of prostate cancer, compared to a single antigen approach. Utilizing a bioinformatics approach, synthetic enhanced DNA vaccine (SEV) constructs were generated against STEAP1, PAP, PARM1, PSCA, PCTA and PSP94. Synthetic enhanced vaccines for prostate cancer antigens were shown to elicit antigen-specific immune responses in mice and the anti-tumor activity was evident in a prostate tumor challenge mouse model. These studies support further evaluation of the DNA tools for immunotherapy of prostate cancer and perhaps other cancers.

16.
Viruses ; 13(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673603

RESUMO

The emergence of multiple concurrent infectious diseases localized in the world creates a complex burden on global public health systems. Outbreaks of Ebola, Lassa, and Marburg viruses in overlapping regions of central and West Africa and the co-circulation of Zika, Dengue, and Chikungunya viruses in areas with A. aegypti mosquitos highlight the need for a rapidly deployable, safe, and versatile vaccine platform readily available to respond. The DNA vaccine platform stands out as such an application. Here, we present proof-of-concept studies from mice, guinea pigs, and nonhuman primates for two multivalent DNA vaccines delivered using in vivo electroporation (EP) targeting mosquito-borne (MMBV) and hemorrhagic fever (MHFV) viruses. Immunization with MMBV or MHFV vaccines via intradermal EP delivery generated robust cellular and humoral immune responses against all target viral antigens in all species. MMBV vaccine generated antigen-specific binding antibodies and IFNγ-secreting lymphocytes detected in NHPs up to six months post final immunization, suggesting induction of long-term immune memory. Serum from MHFV vaccinated NHPs demonstrated neutralizing activity in Ebola, Lassa, and Marburg pseudovirus assays indicating the potential to offer protection. Together, these data strongly support and demonstrate the versatility of DNA vaccines as a multivalent vaccine development platform for emerging infectious diseases.


Assuntos
Culicidae/virologia , Ebolavirus/imunologia , Vacinas Combinadas/imunologia , Vacinas de DNA/imunologia , África Ocidental , Animais , Anticorpos Antivirais/imunologia , Arenavirus do Novo Mundo/imunologia , Vírus da Dengue/imunologia , Epidemias , Feminino , Cobaias , Doença pelo Vírus Ebola/imunologia , Imunidade Humoral/imunologia , Imunização/métodos , Febre Lassa/imunologia , Marburgvirus/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Vacinação/métodos , Vacinas Virais/imunologia , Zika virus/imunologia , Infecção por Zika virus/imunologia
17.
EClinicalMedicine ; 31: 100689, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33392485

RESUMO

BACKGROUND: A vaccine against SARS-CoV-2 is of high urgency. Here the safety and immunogenicity induced by a DNA vaccine (INO-4800) targeting the full length spike antigen of SARS-CoV-2 are described. METHODS: INO-4800 was evaluated in two groups of 20 participants, receiving either 1.0 mg or 2.0 mg of vaccine intradermally followed by CELLECTRA® EP at 0 and 4 weeks. Thirty-nine subjects completed both doses; one subject in the 2.0 mg group discontinued trial participation prior to receiving the second dose. ClinicalTrials.gov identifier: NCT04336410. FINDINGS: The median age was 34.5, 55% (22/40) were men and 82.5% (33/40) white. Through week 8, only 6 related Grade 1 adverse events in 5 subjects were observed. None of these increased in frequency with the second administration. No serious adverse events were reported. All 38 subjects evaluable for immunogenicity had cellular and/or humoral immune responses following the second dose of INO-4800. By week 6, 95% (36/38) of the participants seroconverted based on their responses by generating binding (ELISA) and/or neutralizing antibodies (PRNT IC50), with responder geometric mean binding antibody titers of 655.5 [95% CI (255.6, 1681.0)] and 994.2 [95% CI (395.3, 2500.3)] in the 1.0 mg and 2.0 mg groups, respectively. For neutralizing antibody, 78% (14/18) and 84% (16/19) generated a response with corresponding geometric mean titers of 102.3 [95% CI (37.4, 280.3)] and 63.5 [95% CI (39.6, 101.8)], in the respective groups. By week 8, 74% (14/19) and 100% (19/19) of subjects generated T cell responses by IFN-É£ ELISpot assay with the median SFU per 106 PBMC of 46 [95% CI (21.1, 142.2)] and 71 [95% CI (32.2, 194.4)] in the 1.0 mg and 2.0 mg groups, respectively. Flow cytometry demonstrated a T cell response, dominated by CD8+ T cells co-producing IFN-É£ and TNF-α, without increase in IL-4. INTERPRETATION: INO-4800 demonstrated excellent safety and tolerability and was immunogenic in 100% (38/38) of the vaccinated subjects by eliciting either or both humoral or cellular immune responses. FUNDING: Coalition for Epidemic Preparedness Innovations (CEPI).

18.
Vaccines (Basel) ; 8(4)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297341

RESUMO

Background: Several techniques are under investigation to improve the immunogenicity of HIV-1 DNA vaccine candidates. DNA vaccines are advantageous due to their ease of design, expression of multiple antigens, and safety. METHODS: The HVTN 098 trial assessed the PENNVAX®-GP DNA vaccine (encoding HIV env, gag, pol) administered with or without plasmid IL-12 at 0-, 1-, 3-, and 6-month timepoints via intradermal (ID) or intramuscular (IM) electroporation (EP) in healthy, adult participants. We report on safety, tolerability, and acceptability. RESULTS: HVTN 098 enrolled 94 participants: 85 received PENNVAX®-GP and nine received placebo. Visual analog scale (VAS) pain scores immediately after each vaccination were lower in the ID/EP than in the IM/EP group (medians 4.1-4.6 vs. 6-6.5, p < 0.01). IM/EP participants reported greater pain and/or tenderness at the injection site. Most ID/EP participants had skin lesions such as scabs/eschars, scars, and pigmentation changes, which resolved within 6 months in 51% of participants (24/55). Eighty-two percent of IM/EP and 92% of ID/EP participant survey responses showed acceptable levels of discomfort. CONCLUSIONS: ID/EP and IM/EP are distinct experiences; however, HIV-1 DNA vaccination by either route was safe, tolerable and acceptable by most study participants.

19.
Nucleic Acid Ther ; 30(6): 379-391, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32907467

RESUMO

Hyperammonemia is a dangerous life-threatening metabolic complication characterized by markedly elevated ammonia levels that can lead to irreversible brain damage if not carefully monitored. Current pharmacological treatment strategies available for hyperammonemia patients are suboptimal and associated with major side effects. In this study, we focus on developing and evaluating the in vivo delivery of novel DNA-encoded glutamine synthetase (GS) enzymes for the treatment of hyperammonemia. Direct in vivo delivered DNA-encoded GS enzyme was evaluated in ammonium acetate-induced hyperammonemia and thioacetamide-induced acute liver injury (ALI) models in C57BL/6 mice. In ammonium acetate-induced hyperammonemia model, we achieved a 30.5% decrease in blood ammonia levels 15 min postadministration of ammonium acetate, with DNA-encoded GS-treated group. Significant increase in survival was observed in ALI model with the treated mice. A comparison of the secreted versus intracellular DNA-encoded GS enzyme demonstrated similar increases in survival in the ALI model, with 40% mortality in the secreted enzymes and 30% mortality in the intracellular enzymes, as compared with 90% mortality in the control group. Direct in vivo delivery of DNA-encoded GS demonstrated important ammonia-lowering potential. These results provide the initial steps toward development of delivered DNA as a potential new approach to ammonia-lowering therapeutics.


Assuntos
DNA/farmacologia , Glutamato-Amônia Ligase/genética , Hiperamonemia/tratamento farmacológico , Fígado/efeitos dos fármacos , Amônia/metabolismo , Animais , Modelos Animais de Doenças , Glutamato-Amônia Ligase/farmacologia , Glutamina/metabolismo , Humanos , Hiperamonemia/metabolismo , Fígado/metabolismo , Camundongos
20.
Cancer Immunol Res ; 8(11): 1354-1364, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913042

RESUMO

Cytolytic T cells (CTL) play a pivotal role in surveillance against tumors. Induction of CTL responses by vaccination may be challenging, as it requires direct transduction of target cells or special adjuvants to promote cross-presentation. Here, we observed induction of robust CTL responses through electroporation-facilitated, DNA-launched nanoparticle vaccination (DLnano-vaccines). Electroporation was observed to mediate transient tissue apoptosis and macrophage infiltration, which were deemed essential to the induction of CTLs by DLnano-vaccines through a systemic macrophage depletion study. Bolus delivery of protein nano-vaccines followed by electroporation, however, failed to induce CTLs, suggesting direct in vivo production of nano-vaccines may be required. Following these observations, new DLnano-vaccines scaffolding immunodominant melanoma Gp100 and Trp2 epitopes were designed and shown to induce more potent and consistent epitope-specific CTL responses than the corresponding DNA monomeric vaccines or CpG-adjuvanted peptide vaccines. DNA, but not recombinant protein, nano-vaccinations induced CTL responses to these epitopes and suppressed melanoma tumor growth in mouse models in a CD8+ T-cell-dependent fashion. Further studies to explore the use of DLnano-vaccines against other cancer targets and the biology with which they induce CTLs are important.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Nanopartículas/metabolismo , Neoplasias/imunologia , Linfócitos T/imunologia , Vacinas de DNA/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Vacinas de DNA/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...